
Two routes to automata minimization
and the ways to reach it efficiently

Sylvain Lombardy
a

and Jacques Sakarovitch
b

a
LaBRI, Bordeaux INP / Université de Bordeaux / CNRS

b
IRIF, CNRS / Université Denis-Diderot and Telecom ParisTech

CIAA 2018, 1 August 2018, Charlottetown (PEI)



Common knowledge in FA Theory

� Every regular language L has a minimal DFA
(that is canonically associated with L )



Common knowledge in FA Theory

A DFA

� Every DFA A has a minimal quotient

� This quotient is characteristic of L(A)



Common knowledge in FA Theory

A DFA

� Every DFA A has a minimal quotient

� This quotient is characteristic of L(A)

� The minimal quotient of a DFA A may be effectively computed
by a quadratic algorithm



Common knowledge in FA Theory

A DFA n states

� Every DFA A has a minimal quotient

� This quotient is characteristic of L(A)

� The minimal quotient of a DFA A may be effectively computed
by the ‘Moore’ algorithm with a complexity O

(
n2
)



Common knowledge in FA Theory

A DFA n states

� Every DFA A has a minimal quotient

� This quotient is characteristic of L(A)

� The minimal quotient of a DFA A may be effectively computed
by the ‘Moore’ algorithm with a complexity O

(
n2
)

� The minimal quotient of a DFA A may be effectively computed
by the ‘Hopcroft’ algorithm with a complexity O(n log n)



What is this talk about

A NFA



What is this talk about

A NFA

� Every NFA A has a minimal quotient



What is this talk about

A NFA

� Every NFA A has a minimal quotient

� This quotient is no more characteristic of L(A)



What is this talk about

A NFA

� Every NFA A has a minimal quotient

� This quotient is no more characteristic of L(A)

� This quotient is sometimes called
the bisimulation minimal model of A



What is this talk about

A NFA n states m transitions

� Every NFA A has a minimal quotient

� This quotient is no more characteristic of L(A)

� This quotient is sometimes called
the bisimulation minimal model of A

� The minimal quotient of an NFA A may be effectively computed
by a ‘quadratic’ algorithm



What is this talk about

A NFA n states m transitions

� Every NFA A has a minimal quotient

� This quotient is no more characteristic of L(A)

� This quotient is sometimes called
the bisimulation minimal model of A

� The minimal quotient of a NFA A may be effectively computed
by the ‘Forward’ algorithm with a complexity O(mn)



What is this talk about

A NFA n states m transitions

� Every NFA A has a minimal quotient

� This quotient is no more characteristic of L(A)

� This quotient is sometimes called
the bisimulation minimal model of A

� The minimal quotient of a NFA A may be effectively computed
by the ‘Forward’ algorithm with a complexity O(mn)

� The minimal quotient of a NFA A may be effectively computed
by the ‘Backward’ algorithm with a complexity O(mn)



What is this talk about

A NFA n states m transitions

� Every NFA A has a minimal quotient

� This quotient is no more characteristic of L(A)

� This quotient is sometimes called
the bisimulation minimal model of A

� The minimal quotient of a NFA A may be effectively computed
by the ‘Forward’ algorithm with a complexity O(mn)

� The minimal quotient of a NFA A may be effectively computed
by the ‘Backward’ algorithm with a complexity O(mn)

� Under some hypotheses, the Backward algorithm may be improved
into the ‘Fast Backward’ algorithm with a complexity O(m log n)



What is this talk about

A WFA n states m transitions

� Every WFA A has a minimal quotient

� This quotient is no more characteristic of L(A)

� This quotient is sometimes called
the bisimulation minimal model of A

� The minimal quotient of a WFA A may be effectively computed
by the ‘Forward’ algorithm with a complexity O(mn)

� The minimal quotient of a WFA A may be effectively computed
by the ‘Backward’ algorithm with a complexity O(mn)

� Under some hypotheses, the Backward algorithm may be improved
into the ‘Fast Backward’ algorithm with a complexity O(m log n)



Examples of automata minimisation

with Awali



Benchmarks

k 14 17 20 23 26 30

Fk 987 4181 17711 75025 317811 2178309

Forward t (s) 0.42 7.37 139

10−7t/F 2
k 4.3 4.2 4.4

Backward t (s) 0.010 0.045 0.257 1.36 73 257

10−7t/k Fk 7.2 6.3 7.3 7.6 6.7 7.5

Fast t (s) 0.006 0.025 0.140 0.70 41 139

Backward 10−7t/k Fk 4.2 3.5 3.9 3.8 3.5 3.7

Minimisation of Fk



Benchmarks

2p − 1

2p

2p + 1

2p + 2

a+ 2b

a
b

2a + b



Benchmarks

2p − 1

2p

2p + 1

2p + 2

a+ 2b

a
b

2a + b

n 210 212 213 214 215 222

Forward t (s) 3.29 53.2 214

10−6t/n2 3.1 3.2 3.2

Backward t (s) 0.31 4.92 20.5 86.1 346

10−7t/n2 3.0 2.9 3.1 3.2 3.2

Fast t (s) 0.008 0.030 0.061 0.12 0.24 30.8

Backward 10−6t/n 7.8 7.3 7.4 7.3 7.3 7.3

Minimisation of Railroad(n)



The theory behind minimisation algorithms

� Automata (DFA, NFA, WFA) are (mathematical) structures



The theory behind minimisation algorithms

� Automata (DFA, NFA, WFA) are (mathematical) structures

� Structures admit morpisms ϕ : A → B , that is,
maps that respect the structure



The theory behind minimisation algorithms

� Automata (DFA, NFA, WFA) are (mathematical) structures

� Structures admit morpisms ϕ : A → B , that is,
maps that respect the structure

� The kernel of ϕ : A → B , that is, the equivalence map of ϕ ,is
a partition of the elements of the structure,

here the states, that is called a congruence



A useful trick

A = 〈 I ,E ,T 〉

p

q

r
2

−b

−b

b

2b

a
2b

a

a

a

−a

(
2 1 0

)
,



−a −b 2b
a −b a + 2b
a a b


,



0
1
1






A useful trick

A = 〈 I ,E ,T 〉

p

q

r

i t

2

−b

−b

b

2b

a
2b

a

a

a

−a

(
2 1 0

)
,



−a −b 2b
a −b a + 2b
a a b


,



0
1
1






A useful trick

A = 〈 I ,E ,T 〉

p

q

r

i t

2

−b

−b

b

2b

a
2b

a

a

a

−a

(
2 1 0

)
,



−a −b 2b
a −b a + 2b
a a b


,



0
1
1






A useful trick

A = 〈 I ,E ,T 〉

p

q

r

i t

2$

$ $

$

−b

−b

b

2b

a
2b

a

a

a

−a

(
2 1 0

)
,



−a −b 2b
a −b a + 2b
a a b


,



0
1
1






A useful trick

A = 〈 I ,E ,T 〉 A$ = A ∪ {$} A$ = 〈 i ,E$, t 〉

p

q

r

i t

2$

$ $

$

−b

−b

b

2b

a
2b

a

a

a

−a

(
2 1 0

)
,



−a −b 2b
a −b a + 2b
a a b


,



0
1
1




(
1 0 0 0 0

)
,




0 2$ $ 0 0
0 −a −b 2b 0
0 a −b a+ 2b $

0 a a b $

0 0 0 0 0



,




0
0
0
0
1






The theory behind minimisation algorithms

Definition
A = 〈Q, i ,E , t 〉 K-automaton
An equivalence P on Q is a congruence on A, if:

{i} ∈ P , {t} ∈ P , and

∀p, q pPq =⇒ ∀a ∈ A$ , ∀D ∈ P
∑
r∈D

E (p, a, r) =
∑
r∈D

E (q, a, r)



The theory behind minimisation algorithms

Definition
A = 〈Q, i ,E , t 〉 K-automaton
An equivalence P on Q is a congruence on A, if:

{i} ∈ P , {t} ∈ P , and

∀p, q pPq =⇒ ∀a ∈ A$ , ∀D ∈ P
∑
r∈D

E (p, a, r) =
∑
r∈D

E (q, a, r)

Theorem
Every K-automaton A admits a unique coarsest congruence



The theory behind minimisation algorithms

Definition
A = 〈Q, i ,E , t 〉 K-automaton
An equivalence P on Q is a congruence on A, if:

{i} ∈ P , {t} ∈ P , and

∀p, q pPq =⇒ ∀a ∈ A$ , ∀D ∈ P
∑
r∈D

E (p, a, r) =
∑
r∈D

E (q, a, r)

Theorem
Every K-automaton A admits a unique coarsest congruence

Definition
The quotient of A by its coarsest congruence is

the minimal quotient of A



The theory behind minimisation algorithms

Remark
The definition of a congruence (and of Out-morphism) is directed



The theory behind minimisation algorithms

Remark
The definition of a congruence (and of Out-morphism) is directed

The definition of Out-morphism coincides

� for DFA, with the classical notion of morphism

� for NFA, with the notion of bisimulation

� for WFA, with the simulation of Bloom-Ésik



The proto-algorithm

Definition
The signature of state p of A$ = 〈Q, i ,E , t 〉 with respect to D ⊆ Q
is the map sig[p,D] : A$ → K defined by:

sig[p,D](a) =
∑
q∈D

E (p, a, q)



The proto-algorithm

Definition
The signature of state p of A$ = 〈Q, i ,E , t 〉 with respect to D ⊆ Q
is the map sig[p,D] : A$ → K defined by:

sig[p,D](a) =
∑
q∈D

E (p, a, q)

Definition
An equivalence P on Q is a congruence on A$, if:

{i} ∈ P , {t} ∈ P , and

∀p, q pPq =⇒ ∀a ∈ A$ , ∀D ∈ P
∑
r∈D

E (p, a, r) =
∑
r∈D

E (q, a, r)



The proto-algorithm

Definition
The signature of state p of A$ = 〈Q, i ,E , t 〉 with respect to D ⊆ Q
is the map sig[p,D] : A$ → K defined by:

sig[p,D](a) =
∑
q∈D

E (p, a, q)

Definition
An equivalence P on Q is a congruence on A$, if:

{i} ∈ P , {t} ∈ P , and

∀p, q pPq =⇒ ∀a ∈ A$ , ∀D ∈ P
∑
r∈D

E (p, a, r) =
∑
r∈D

E (q, a, r)

Definition
An equivalence P on Q is a congruence on A$ if:

∀C ∈ P , ∀p, q ∈ C , ∀D ∈ P sig[p,D] = sig[q,D] .



The proto-algorithm

Definition
The signature of state p of A$ = 〈Q, i ,E , t 〉 with respect to D ⊆ Q
is the map sig[p,D] : A$ → K defined by:

sig[p,D](a) =
∑
q∈D

E (p, a, q)

Definition
An equivalence P on Q is a congruence on A$ if:

∀C ∈ P , ∀p, q ∈ C , ∀D ∈ P sig[p,D] = sig[q,D] .



The proto-algorithm

Definition
The signature of state p of A$ = 〈Q, i ,E , t 〉 with respect to D ⊆ Q
is the map sig[p,D] : A$ → K defined by:

sig[p,D](a) =
∑
q∈D

E (p, a, q)

Definition
An equivalence P on Q is a congruence on A$ if:

∀C ∈ P , ∀p, q ∈ C , ∀D ∈ P sig[p,D] = sig[q,D] .

Definition
split[C ,D] map equivalence on C of the signature w.r.t. D

∀p, q ∈ C split[C ,D](p) = split[C ,D](q) ⇔ sig[p,D] = sig[q,D]



The proto-algorithm

Definition
The signature of state p of A$ = 〈Q, i ,E , t 〉 with respect to D ⊆ Q
is the map sig[p,D] : A$ → K defined by:

sig[p,D](a) =
∑
q∈D

E (p, a, q)

Definition
split[C ,D] map equivalence on C of the signature w.r.t. D

∀p, q ∈ C split[C ,D](p) = split[C ,D](q) ⇔ sig[p,D] = sig[q,D]



The proto-algorithm

Definition
The signature of state p of A$ = 〈Q, i ,E , t 〉 with respect to D ⊆ Q
is the map sig[p,D] : A$ → K defined by:

sig[p,D](a) =
∑
q∈D

E (p, a, q)

Definition
split[C ,D] map equivalence on C of the signature w.r.t. D

∀p, q ∈ C split[C ,D](p) = split[C ,D](q) ⇔ sig[p,D] = sig[q,D]

The proto-algorithm

P := P0

while there exists a splitting pair (C ,D) in P
P := P ∧ split[C ,D]



The Forward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions



The Forward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Forward Algorithm



The Forward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Forward Algorithm queue = queue of classes



The Forward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Forward Algorithm queue = queue of classes

� P0 = {i},Q, {t} Q → queue



The Forward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Forward Algorithm queue = queue of classes

� P0 = {i},Q, {t} Q → queue

� Notion of round in the algorithm



The Forward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Forward Algorithm queue = queue of classes

� P0 = {i},Q, {t} Q → queue

� Notion of round in the algorithm

� At round i + 1, for every C ∈ queue,
• compute split[C ,D] for every D ∈ Pi

• put the pieces in queue, even if C is not split (but the singletons)



The Forward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Forward Algorithm queue = queue of classes

� P0 = {i},Q, {t} Q → queue

� Notion of round in the algorithm

� At round i + 1, for every C ∈ queue,
• compute split[C ,D] for every D ∈ Pi

• put the pieces in queue, even if C is not split (but the singletons)

� Pi+1 = content of queue + singletons



The Forward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Forward Algorithm queue = queue of classes

� P0 = {i},Q, {t} Q → queue

� Notion of round in the algorithm

� At round i + 1, for every C ∈ queue,
• compute split[C ,D] for every D ∈ Pi

• put the pieces in queue, even if C is not split (but the singletons)

� Pi+1 = content of queue + singletons

� If no split occurs in round i + 1, ie if Pi+1 = Pi , stop



The Forward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Forward Algorithm queue = queue of classes

� P0 = {i},Q, {t} Q → queue

� Notion of round in the algorithm

� At round i + 1, for every C ∈ queue,
• compute split[C ,D] for every D ∈ Pi

• put the pieces in queue, even if C is not split (but the singletons)

� Pi+1 = content of queue + singletons

� If no split occurs in round i + 1, ie if Pi+1 = Pi , stop

Theorem
Forward Algorithm computes the coarsest congruence in O(n(m + n))



The Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions



The Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Backward Algorithm



The Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Backward Algorithm queue = queue of classes



The Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Backward Algorithm queue = queue of classes

� P0 = {i},Q, {t} {t} → queue Q → queue



The Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Backward Algorithm queue = queue of classes

� P0 = {i},Q, {t} {t} → queue Q → queue

� for every D ∈ queue,
• for every C ∈ Pi that is not a singleton,

and that contains a predecessor of a state in D ∈ queue
− compute split[C ,D]
− if it is a true split, put pieces in queue (even singletons)

• Pi+1 = Pi ∧ ∪ split[C ,D]



The Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Backward Algorithm queue = queue of classes

� P0 = {i},Q, {t} {t} → queue Q → queue

� for every D ∈ queue,
• for every C ∈ Pi that is not a singleton,

and that contains a predecessor of a state in D ∈ queue
− compute split[C ,D]
− if it is a true split, put pieces in queue (even singletons)

• Pi+1 = Pi ∧ ∪ split[C ,D]

� stop when queue is empty



The Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Backward Algorithm queue = queue of classes

� P0 = {i},Q, {t} {t} → queue Q → queue

� for every D ∈ queue,
• for every C ∈ Pi that is not a singleton,

and that contains a predecessor of a state in D ∈ queue
− compute split[C ,D]
− if it is a true split, put pieces in queue (even singletons)

• Pi+1 = Pi ∧ ∪ split[C ,D]

� stop when queue is empty

Theorem
Backward Algorithm computes the coarsest congruence in O(n(m + n))



The Fast Backward Algorithm

Hopcroft’s algorithm is an improvement of Backward Algorithm
for complete DFA

It implements indeed the strategy ‘all but the largest’
described by Tarjan and Paige



The Fast Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions



The Fast Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

Signatures are equipped with a pointwise addition

D ∩ D ′ = ∅ =⇒ sig[p,D ∪D ′] = sig[p,D] + sig[p,D ′]



The Fast Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

Signatures are equipped with a pointwise addition

D ∩ D ′ = ∅ =⇒ sig[p,D ∪D ′] = sig[p,D] + sig[p,D ′]

Definition
A has simplifiable signatures if ∀D ⊆ Q ∀C ⊆ D ∀p, q ∈ Q

sig[p,D] = sig[q,D] and sig[p,C ] = sig[q,C ] =⇒ sig[p,D\C ] = sig[q,D\C ].



The Fast Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

Signatures are equipped with a pointwise addition

D ∩ D ′ = ∅ =⇒ sig[p,D ∪D ′] = sig[p,D] + sig[p,D ′]

Definition
A has simplifiable signatures if ∀D ⊆ Q ∀C ⊆ D ∀p, q ∈ Q

sig[p,D] = sig[q,D] and sig[p,C ] = sig[q,C ] =⇒ sig[p,D\C ] = sig[q,D\C ].

If (K,+) is a cancellative monoid (in particular if K is a ring),
then all K-automata have simplifiable signatures.



The Fast Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

Signatures are equipped with a pointwise addition

D ∩ D ′ = ∅ =⇒ sig[p,D ∪D ′] = sig[p,D] + sig[p,D ′]

Definition
A has simplifiable signatures if ∀D ⊆ Q ∀C ⊆ D ∀p, q ∈ Q

sig[p,D] = sig[q,D] and sig[p,C ] = sig[q,C ] =⇒ sig[p,D\C ] = sig[q,D\C ].

If (K,+) is a cancellative monoid (in particular if K is a ring),
then all K-automata have simplifiable signatures.

If A is a deterministic automaton — not necessarily complete,
then A has simplifiable signatures.



The Fast Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

Signatures are equipped with a pointwise addition

D ∩ D ′ = ∅ =⇒ sig[p,D ∪D ′] = sig[p,D] + sig[p,D ′]

Definition
A has simplifiable signatures if ∀D ⊆ Q ∀C ⊆ D ∀p, q ∈ Q

sig[p,D] = sig[q,D] and sig[p,C ] = sig[q,C ] =⇒ sig[p,D\C ] = sig[q,D\C ].

If (K,+) is a cancellative monoid (in particular if K is a ring),
then all K-automata have simplifiable signatures.

If A is a deterministic automaton — not necessarily complete,
then A has simplifiable signatures.

If A is a sequential K-automaton,
then A has simplifiable signatures.



The Fast Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Fast Backward Algorithm queue = queue of classes

� P0 = {i},Q, {t} {t} → queue Q → queue

� for every D ∈ queue,
• for every C ∈ Pi that is not a singleton,

and that contains a predecessor of a state in D ∈ queue
− compute split[C ,D]
− if it is a true split, put pieces in queue (even singletons)

but the largest piece
• Pi+1 = Pi ∧ ∪ split[C ,D]

� stop when queue is empty



The Fast Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Fast Backward Algorithm queue = queue of classes

� P0 = {i},Q, {t} {t} → queue Q → queue

� for every D ∈ queue,
• for every C ∈ Pi that is not a singleton,

and that contains a predecessor of a state in D ∈ queue
− compute split[C ,D]
− if it is a true split, put pieces in queue (even singletons)

but the largest piece
• Pi+1 = Pi ∧ ∪ split[C ,D]

� stop when queue is empty

Theorem
If A has simplifiable signatures, then Fast Backward Algorithm

computes the coarsest congruence in O((m + n) log n)



Conclusion

� Every automaton (DFA, NFA, WFA) has a minimal quotient



Conclusion

� Every automaton (DFA, NFA, WFA) has a minimal quotient

� Two main algorithms for computing the minimal quotient



Conclusion

� Every automaton (DFA, NFA, WFA) has a minimal quotient

� Two main algorithms for computing the minimal quotient

� They both have a time complexity of O(n(m + n))



Conclusion

� Every automaton (DFA, NFA, WFA) has a minimal quotient

� Two main algorithms for computing the minimal quotient

� They both have a time complexity of O(n(m + n))

� Devil is in the details of the implementation
to achieve the prescribed complexity



Conclusion

� Every automaton (DFA, NFA, WFA) has a minimal quotient

� Two main algorithms for computing the minimal quotient

� They both have a time complexity of O(n(m + n))

� Devil is in the details of the implementation
to achieve the prescribed complexity

� Simplifiable signatures allow a complexity of O((m + n) log n)



Conclusion

� Every automaton (DFA, NFA, WFA) has a minimal quotient

� Two main algorithms for computing the minimal quotient

� They both have a time complexity of O(n(m + n))

� Devil is in the details of the implementation
to achieve the prescribed complexity

� Simplifiable signatures allow a complexity of O((m + n) log n)

� This subsumes and generalises works of
Hopcroft, Béal–Crochemore, Valmari–Lehtinen



Conclusion

� Every automaton (DFA, NFA, WFA) has a minimal quotient

� Two main algorithms for computing the minimal quotient

� They both have a time complexity of O(n(m + n))

� Devil is in the details of the implementation
to achieve the prescribed complexity

� Simplifiable signatures allow a complexity of O((m + n) log n)

� This subsumes and generalises works of
Hopcroft, Béal–Crochemore, Valmari–Lehtinen

� Open problem:
lower bound for minimisation of Boolean and Zmin-automata


