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Common knowledge in FA Theory

� Every regular language L has a minimal DFA
(that is canonically associated with L )
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Common knowledge in FA Theory

A DFA n states

� Every DFA A has a minimal quotient

� This quotient is characteristic of L(A)

� The minimal quotient of a DFA A may be effectively computed
by the ‘Moore’ algorithm with a complexity O

(
n2
)

� The minimal quotient of a DFA A may be effectively computed
by the ‘Hopcroft’ algorithm with a complexity O(n log n)
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What is this talk about

A WFA n states m transitions

� Every WFA A has a minimal quotient

� This quotient is no more characteristic of L(A)

� This quotient is sometimes called
the bisimulation minimal model of A

� The minimal quotient of a WFA A may be effectively computed
by the ‘Forward’ algorithm with a complexity O(mn)

� The minimal quotient of a WFA A may be effectively computed
by the ‘Backward’ algorithm with a complexity O(mn)

� Under some hypotheses, the Backward algorithm may be improved
into the ‘Fast Backward’ algorithm with a complexity O(m log n)



Examples of automata minimisation

with Awali



Benchmarks

k 14 17 20 23 26 30

Fk 987 4181 17711 75025 317811 2178309

Forward t (s) 0.42 7.37 139

10−7t/F 2
k 4.3 4.2 4.4

Backward t (s) 0.010 0.045 0.257 1.36 73 257

10−7t/k Fk 7.2 6.3 7.3 7.6 6.7 7.5

Fast t (s) 0.006 0.025 0.140 0.70 41 139

Backward 10−7t/k Fk 4.2 3.5 3.9 3.8 3.5 3.7

Minimisation of Fk
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Benchmarks

2p − 1

2p

2p + 1

2p + 2

a+ 2b

a
b

2a + b

n 210 212 213 214 215 222

Forward t (s) 3.29 53.2 214

10−6t/n2 3.1 3.2 3.2

Backward t (s) 0.31 4.92 20.5 86.1 346

10−7t/n2 3.0 2.9 3.1 3.2 3.2

Fast t (s) 0.008 0.030 0.061 0.12 0.24 30.8

Backward 10−6t/n 7.8 7.3 7.4 7.3 7.3 7.3

Minimisation of Railroad(n)
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The theory behind minimisation algorithms

� Automata (DFA, NFA, WFA) are (mathematical) structures

� Structures admit morpisms ϕ : A → B , that is,
maps that respect the structure

� The kernel of ϕ : A → B , that is, the equivalence map of ϕ ,is
a partition of the elements of the structure,

here the states, that is called a congruence
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A useful trick

A = 〈 I ,E ,T 〉 A$ = A ∪ {$} A$ = 〈 i ,E$, t 〉
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The theory behind minimisation algorithms
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A = 〈Q, i ,E , t 〉 K-automaton
An equivalence P on Q is a congruence on A, if:

{i} ∈ P , {t} ∈ P , and

∀p, q pPq =⇒ ∀a ∈ A$ , ∀D ∈ P
∑
r∈D

E (p, a, r) =
∑
r∈D

E (q, a, r)



The theory behind minimisation algorithms

Definition
A = 〈Q, i ,E , t 〉 K-automaton
An equivalence P on Q is a congruence on A, if:

{i} ∈ P , {t} ∈ P , and

∀p, q pPq =⇒ ∀a ∈ A$ , ∀D ∈ P
∑
r∈D

E (p, a, r) =
∑
r∈D

E (q, a, r)

Theorem
Every K-automaton A admits a unique coarsest congruence



The theory behind minimisation algorithms

Definition
A = 〈Q, i ,E , t 〉 K-automaton
An equivalence P on Q is a congruence on A, if:

{i} ∈ P , {t} ∈ P , and

∀p, q pPq =⇒ ∀a ∈ A$ , ∀D ∈ P
∑
r∈D

E (p, a, r) =
∑
r∈D

E (q, a, r)

Theorem
Every K-automaton A admits a unique coarsest congruence

Definition
The quotient of A by its coarsest congruence is

the minimal quotient of A
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The theory behind minimisation algorithms

Remark
The definition of a congruence (and of Out-morphism) is directed

The definition of Out-morphism coincides

� for DFA, with the classical notion of morphism

� for NFA, with the notion of bisimulation

� for WFA, with the simulation of Bloom-Ésik
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The proto-algorithm

Definition
The signature of state p of A$ = 〈Q, i ,E , t 〉 with respect to D ⊆ Q
is the map sig[p,D] : A$ → K defined by:

sig[p,D](a) =
∑
q∈D

E (p, a, q)

Definition
split[C ,D] map equivalence on C of the signature w.r.t. D

∀p, q ∈ C split[C ,D](p) = split[C ,D](q) ⇔ sig[p,D] = sig[q,D]

The proto-algorithm

P := P0

while there exists a splitting pair (C ,D) in P
P := P ∧ split[C ,D]
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The Forward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Forward Algorithm queue = queue of classes

� P0 = {i},Q, {t} Q → queue

� Notion of round in the algorithm

� At round i + 1, for every C ∈ queue,
• compute split[C ,D] for every D ∈ Pi

• put the pieces in queue, even if C is not split (but the singletons)

� Pi+1 = content of queue + singletons

� If no split occurs in round i + 1, ie if Pi+1 = Pi , stop

Theorem
Forward Algorithm computes the coarsest congruence in O(n(m + n))
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A$ = 〈Q, i ,E , t 〉 n states m transitions

The Backward Algorithm queue = queue of classes

� P0 = {i},Q, {t} {t} → queue Q → queue

� for every D ∈ queue,
• for every C ∈ Pi that is not a singleton,

and that contains a predecessor of a state in D ∈ queue
− compute split[C ,D]
− if it is a true split, put pieces in queue (even singletons)

• Pi+1 = Pi ∧ ∪ split[C ,D]

� stop when queue is empty

Theorem
Backward Algorithm computes the coarsest congruence in O(n(m + n))



The Fast Backward Algorithm

Hopcroft’s algorithm is an improvement of Backward Algorithm
for complete DFA

It implements indeed the strategy ‘all but the largest’
described by Tarjan and Paige
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A$ = 〈Q, i ,E , t 〉 n states m transitions

Signatures are equipped with a pointwise addition

D ∩ D ′ = ∅ =⇒ sig[p,D ∪D ′] = sig[p,D] + sig[p,D ′]

Definition
A has simplifiable signatures if ∀D ⊆ Q ∀C ⊆ D ∀p, q ∈ Q

sig[p,D] = sig[q,D] and sig[p,C ] = sig[q,C ] =⇒ sig[p,D\C ] = sig[q,D\C ].

If (K,+) is a cancellative monoid (in particular if K is a ring),
then all K-automata have simplifiable signatures.

If A is a deterministic automaton — not necessarily complete,
then A has simplifiable signatures.

If A is a sequential K-automaton,
then A has simplifiable signatures.
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The Fast Backward Algorithm

A$ = 〈Q, i ,E , t 〉 n states m transitions

The Fast Backward Algorithm queue = queue of classes

� P0 = {i},Q, {t} {t} → queue Q → queue

� for every D ∈ queue,
• for every C ∈ Pi that is not a singleton,

and that contains a predecessor of a state in D ∈ queue
− compute split[C ,D]
− if it is a true split, put pieces in queue (even singletons)

but the largest piece
• Pi+1 = Pi ∧ ∪ split[C ,D]

� stop when queue is empty

Theorem
If A has simplifiable signatures, then Fast Backward Algorithm

computes the coarsest congruence in O((m + n) log n)
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Conclusion

� Every automaton (DFA, NFA, WFA) has a minimal quotient

� Two main algorithms for computing the minimal quotient

� They both have a time complexity of O(n(m + n))

� Devil is in the details of the implementation
to achieve the prescribed complexity

� Simplifiable signatures allow a complexity of O((m + n) log n)

� This subsumes and generalises works of
Hopcroft, Béal–Crochemore, Valmari–Lehtinen

� Open problem:
lower bound for minimisation of Boolean and Zmin-automata


