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CNRS / Université Denis-Diderot and Telecom ParisTech

Joint work with Sylvain Lombardy , Université de Bordeaux

Survey Lecture at the International Workshop

Weighted Automata: Theory and Applications
Leipzig, 22 May 2018



Based on the results presented in the survey paper:

� Sequential ? Theoret. Computer Sci. 359 (2006)
with S. Lombardy

and described in the general framework set up in:

Chapter III Chapter 4
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Part I

Some views on the weighted automaton model



A touch of general system theory

Paradigm of a machine for the computer scientists

p State
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Paradigm of a machine for the rest of the world

α(·)y x

y = α(x)

x ∈ Rn , y ∈ Rm
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A touch of general system theory

Getting back to computer science

w ∈ A∗B � k L

L ⊆ A∗

The input belongs to a free monoid A∗

The output belongs to the Boolean semiring B

The function realised is a language,

that is, the set of words that are accepted by the machine



The simplest Turing machine

Getting back to computer science

p State

Finite control

a1 a2 a3 a4 an $

Direction of movement of the read head

The 1-way 1-tape Turing Machine (1W1TTM)



The simplest Turing machine is equivalent to finite automata

Getting back to computer science
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L(B1) = {w ∈ A∗ |w ∈ A∗bA∗} = {w ∈ A∗ | |w |b � 1}



Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton for a given language

(minimal deterministic automaton)



Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton for a given language

(minimal deterministic automaton)

Based on

Theorem
Every finite automaton is equivalent to a deterministic one.



And what about the case of

weighted finite automata?



The weighted automaton model
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1−−→ p
b−−→ p

a−−−→ p
b−−−→ q

1−−→
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b−−→ q
a−−−→ q

b−−−→ q
1−−→

B1 : w �−→ |w |b B1 : A
∗ −→ N B1 ∈ N〈〈A∗〉〉

B1 = b+ ab+ ba+ 2ba+ aab+ aba+ · · ·+ 2bab+ · · ·



The weighted automaton model

p q
b
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2a

2b

C1

1−−→ p
b−−→ p

a−−−→ p
b−−−→ q

1−−→
1−−→ p

b−−→ q
2 a−−−→ q

2 b−−−→ q
1−−→

� Weight of a path c : product of the weights of transitions in c

� Weight of a word w : sum of the weights of paths with label w.

C1 : w �−→ 〈w 〉2 C1 : A∗ −→ N C1 ∈ N〈〈A∗〉〉
C1 = b+ ab+ 2ba+ 3ba+ aab+ 2aba+ · · ·+ 5bab+ · · ·



The system theory view of weighted automata
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The output belongs to the semiring K
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The system theory view of weighted automata

w ∈ A∗K � k s

s : A∗ → K s ∈ K〈〈A∗〉〉

The input belongs to a free monoid A∗

The output belongs to the semiring K

The function realised is a function from A∗ to K,

that is, a series in K〈〈A∗〉〉



Series play the role of languages

K〈〈A∗〉〉 plays the role of P (A∗)



Richness of the model of weighted automata

� B ‘classic’ automata

� N ‘usual’ counting

� Z , Q , R numerical multiplicity

� 〈Z ∪ +∞,min,+ 〉 tropical automata

� 〈Z,min,max 〉 fuzzy automata

� P (B∗) = B〈〈B∗〉〉 transducers

� N〈〈B∗〉〉 weighted transducers

� P (F (B)) pushdown automata

� P (M) register automata, M-automata



Automata are matrices
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C1

C1 = 〈 I1,E1,T1 〉 =
〈(

1 0
)
,

(
a+ b b
0 2a + 2b

)
,

(
0
1

)〉
.

Traversal of a graph corresponds to matrix multiplication

E1
∗ =

∑
n∈N

E1
n C1 = I1 · E1

∗ · T1 .



Automata over free monoids are representations
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,
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)
,

(
0
1

)〉
.

E1 =

(
1 0
0 2

)
a+

(
1 1
0 2

)
b

µ1 : A
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)



Automata over free monoids are representations

K semiring A∗ free monoid

K-representation

Q finite µ : A∗ → KQ×Q morphism

(I , µ,T ) I ∈ K1×Q µ : A∗ → KQ×Q T ∈ KQ×1
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Automata over free monoids are representations

K semiring A∗ free monoid

K-representation

Q finite µ : A∗ → KQ×Q morphism

(I , µ,T ) I ∈ K1×Q µ : A∗ → KQ×Q T ∈ KQ×1

(I , µ,T ) realises (recognises) s ∈ K〈〈A∗〉〉
∀w ∈ A∗ 〈s,w 〉 = I · µ(w) · T

KWA(A∗) KRep (A∗)〈 I ,E ,T 〉 (I , µ,T )

E =
∑
a∈A

µ(a)a
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if it is realised by
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Definitions

A series over A∗ is (K-)rational or (K-)recognisable

if it is realised by

a finite (K-)automaton or a (K-)representation

KRatA∗ KRatEA∗ KWA(A∗) KRecA∗
standard

elimination

key lemma
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Definitions

A finite (K-)automaton is sequential

if its support is a deterministic Boolean automaton

A series over A∗ is sequential

if it is realized by a finite sequential automaton

or by a row-monomial representation
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Is it decidable whether a given rational series

is sequential or not ?
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A word on terminology

Most probably, what I call

sequential automaton

is what you call

deterministic automaton.



Part II

The common sequentialisation algorithm



First step: the general determinisation procedure

w ∈ A∗I · µ(w) · T A
A = (I , µ,T ) µ : A∗ −→ KQ×Q
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First step: the general determinisation procedure

w ∈ A∗I · µ(w) · T A
A = (I , µ,T ) µ : A∗ −→ KQ×Q

K1×Q state space I initial state

I · µ(w) state after reading w

I · µ(w) · T output in state I · µ(w)



First step: the general determinisation procedure

A = (I , µ,T ) µ : A∗ −→ KQ×Q



First step: the general determinisation procedure

A = (I , µ,T ) µ : A∗ −→ KQ×Q

µ morphism =⇒=⇒=⇒ I · µ(w a) = (I · µ(w)) · µ(a)
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First step: the general determinisation procedure

A = (I , µ,T ) µ : A∗ −→ KQ×Q

µ morphism =⇒=⇒=⇒ I · µ(w a) = (I · µ(w)) · µ(a)
µ defines an action of A∗ over K1×Q

This action (with I and T ) defines an automaton:

the determinisation Â of A

J = I · µ(u)

ÂJ J · µ(a)I
a |11

I · T J · T J · µ(a) · T



First step: the general determinisation procedure
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First step: the general determinisation procedure

1
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a | 12 , b | 43

a | 12 , b | 43

a | 32 , b | 23 a | 32 , b | 23

A3

µ3(a) =
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First step: the general determinisation procedure

If K = B , determinisation = subset construction
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First step: the general determinisation procedure
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First step: the general determinisation procedure

If K = B , determinisation = subset construction

Determinisation yields a deterministic automaton

and conversely

J = I · µ(u)

ÂJ J · µ(a)I
a |11

I · T J · T J · µ(a) · T
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Second step: the universal minimisation process

s ∈ K〈〈A∗〉〉

〈s, a1 . . . an 〉 = k

The input belongs to a free monoid A∗

The output belongs to K
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Second step: the universal minimisation process

A basic construct: the quotient series

k = 〈s ′, a3 . . . an 〉 = 〈s, a1a2a3 . . . an 〉

a1a2

k



Second step: the universal minimisation process

A basic construct: the quotient series

k = 〈s ′, a3 . . . an 〉 = 〈s, a1a2a3 . . . an 〉
s ′ = [a1a2]

−1s

a1a2

k

The series s ′ is the quotient of s by a1a2
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Second step: the universal minimisation process

A basic construct: the quotient series

k = 〈s ′, v 〉 = 〈s, u v 〉



Second step: the universal minimisation process

A basic construct: the quotient series

k = 〈s ′, v 〉 = 〈s, u v 〉
s ′ = u−1s

The series s ′ is the quotient of s by u
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w ∈ A∗〈s,w 〉 s

Qs = {u−1s | u ∈ A∗} set of quotients of s

Qs1 = {2ns1 | n ∈ N}
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Second step: the universal minimisation process

w ∈ A∗〈s,w 〉 s

Qs = {u−1s | u ∈ A∗} set of quotients of s

Theorem (Schützenberger–Fliess–Jacob)

A series s is recognisable iff Qs is contained
in a finitely generated stable submodule of K〈〈A∗〉〉

Theorem (Myhill-Nerode)

A language L is recognisable iff QL is finite
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Second step: the universal minimisation process

Associativity in A∗ =⇒=⇒=⇒ (u v )−1s = v−1 [u−1s]

If u−1s written s ◦ u , then s ◦ (u v ) = (s ◦ u) ◦ v

The quotient defines an action of A∗ over K〈〈A∗〉〉
This action defines, for every s ,

a deterministic automaton:
the minimal deterministic automaton As of s

Ast a−1ts
a |11

〈s, 1A∗ 〉 〈t, 1A∗ 〉 〈a−1t, 1A∗ 〉
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Second step: the universal minimisation process

A3

Â3

As3

(K)-quotient

determinisation
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Third step: characterisation of sequentiality

Theorem (Schützenberger–Fliess–Jacob)

A series s is recognisable iff Qs is contained
in a stable finitely generated submodule of K〈〈A∗〉〉

Definition
� ⊆ K〈〈A∗〉〉 is a line if � = {k r | k ∈ K} for a given r ∈ K〈〈A∗〉〉

Proposition

A series s is sequential iff Qs is contained
in a stable finite set of lines of K〈〈A∗〉〉
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Third step: characterisation of sequentiality

Further hypothesis

K admits a greatest common divisor operation (gcd)

Examples
� K = N gcd (4, 6, 12) = 2

� K = Nmin gcd (4, 6, 12) = min{4, 6, 12} = 4

� K = Zmin, K = F need for a convention

� P (B∗) has no gcd but

{B∗ ∪ ∅} has one: the longuest common prefix
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Further hypothesis
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Notation let K with gcd
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◦
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◦
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ξ i.e. ξ =
◦
ξ ξ�

� s ∈ K〈〈A∗〉〉 s� =
(◦
s
)−1

s i.e. s =
◦
s s�

Example
s1 = 1A∗ + 2a + 4a2 + 8a3 + · · ·+ 2nan + · · ·
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K admits a greatest common divisor operation (gcd)

Notation let K with gcd

� ξ ∈ KQ
◦
ξ ∈ K

◦
ξ = gcd ({ξq | q ∈ Q})
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s ∈ K

◦
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(◦
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)−1

ξ i.e. ξ =
◦
ξ ξ�
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(◦
s
)−1

s i.e. s =
◦
s s�

Convention K = F , Zmin
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� s ∈ K〈〈A∗〉〉 〈ξ�, 1A∗ 〉 = 1K
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Third step: characterisation of sequentiality

Definition
s ∈ K〈〈A∗〉〉 , u ∈ A∗ [u−1s]� translation of s by u

Gs =
{
[u−1s]�

∣∣ u ∈ A∗} set of translations of s

Translation is an action on Gs

Translation defines a sequential K-automaton of dimension Gs :
the minimal sequential automaton of s, Ds

Theorem (Raney 58)

A series s is sequential iff Gs is finite
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A = (I , µ,T ) µ : A∗ −→ KQ×Q

Distributivity =⇒=⇒=⇒ [I · µ(w a)]� =
[
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]�
µ ◦ � defines an action of A∗ over

[
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µ ◦ � (with I and T ) defines a sequential automaton:

the sequentialisation
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Â2

(
1 0

)1

1

s1 2 s1 4 s1
1

1 2 4

a |1 a |1As1 Ds1s1
1

1

a |2



Forth step: the sequentialisation algorithm

1

1 1

a |1

a |1 a |2

A2
s1 = A1 = A2

(
1 0

) (
1 1

) (
1 3

)1

1 2 4

a |1 a |1
Â2
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� The field case
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A = (I , µ,T ) RA = {I · µ(w) | w ∈ A∗}

A semiring K is locally finite
if every finitely generated subsemiring is finite.

Proposition (?)

K locally finite =⇒=⇒=⇒Â finite.

Example

Fuzzy semirings: 〈N,min,max 〉, 〈 [0, 1],min,max 〉

A

Â << <A

As Ds

Counting in a locally finite semiring is not really counting.
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The field case

K = F field

A = (I , µ,T ) RA = {I · µ(w) | w ∈ A∗}
s = A Qs =

{
u−1s

∣∣ u ∈ A∗}
rs = dim 〈〈〈Qs 〉〉〉 rs rank of s

Theorem (Schützenberger 61)

The s is recognisable iff rs is finite

Definition
A is reduced if dim 〈〈〈RA 〉〉〉 = rs

A

Â << <A

As Ds

Theorem (Schützenberger 61)

A reduced representation of s is computable from any A realising s

Theorem (Reutenauer, L–S 06)

If A is reduced, then

<< <A = Ds
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Idempotent semirings

Definition
K idempotent if k + k = k ∀k ∈ K

Example

� Tropical semirings 〈N,min,+ 〉 , 〈Z,min,+ 〉 , 〈Q,min,+ 〉 , . . .
� Language semirings 〈P (B∗),∪, · 〉 , 〈RatB∗,∪, · 〉 , . . .

P (M) = B〈〈M〉〉
Proposition

B〈〈A∗×B∗〉〉 ∼= [B〈〈B∗〉〉]〈〈A∗〉〉

Theorem (Kleene–Schützenberger)

Rat (A∗×B∗) ∼= [RatB∗]RatA∗ = [RatB∗]RecA∗
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A paradox

Tropical automata and transducers are the

““ most sequentialised”” automata

Tropical semirings, P (B∗) are very complex,

weak and not well understood mathematical structures

Theorem (from Post 36)

Equivalence of transducers is undecidable

Theorem (Krob 91)

Equivalence of tropical automata is undecidable

P (B∗) does not even have gcd !



An explanation ?



An explanation ?

The transducers that are ““sequentialised”” are

the functional tranducers



An explanation ?

The transducers that are ““sequentialised”” are

the functional tranducers

that is, transducers with values in B∗ ∪ {∅}



An explanation ?

The transducers that are ““sequentialised”” are

the functional tranducers

that is, transducers with values in B∗ ∪ {∅}

First relief: B∗∪{∅} has a gcd : the longest common prefix



An explanation ?

The transducers that are ““sequentialised”” are

the functional tranducers

that is, transducers with values in B∗ ∪ {∅}

First relief: B∗∪{∅} has a gcd : the longest common prefix

Second relief:

Theorem (Schützenberger 75)

Functionality of transducers is decidable.
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A quiproquo

Consider for sequentialisation:

� the functional transducers

� the tropical automata

They look so similar! They are so different!

What make them different? 1-valuedness

Definition
A is 1-valued if

every path labelled by a word w
has the same weight.
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A quiproquo

Observation 1
Functional transducers are 1-valued, by definition

Observation 2
Tropical automata are not necessarily 1-valued

a |1, b |0 a |0, b |1

realises s4 , 〈s4,w 〉 = min{|w |a, |w |b}

s4 cannot be realised by a 1-valued automaton



Why is 1-valuedness so important ?

Theorem (Schützenberger 77)

Every 1-valued (finite) automaton is equivalent to
an unambiguous (finite) automaton
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The twinning property

Twin states

p

q

g |k

g |h

f | r

f |s

Congruent twin states

(r , s)� = (r k , s h)�

Definition
A has the twinning property if all twin states are congruent

Theorem (Choffrut 77)

The twinning property is decidable.

Theorem (WK 95, BCPS 00, BCW 98, AM 03)

The twinning property is decidable in polynomial time.
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Decision procedure

Proposition (Choffrut 77, Mohri 97)

A has twinning p. =⇒=⇒=⇒ << <A finite.

Proposition (Choffrut 77, Mohri 97)

A unambiguous and A sequential
=⇒=⇒=⇒ A has twinning p.

Corollary

Sequentiality is decidable
for transducers and 1-valued tropical automata.

A

Â << <A

As Ds
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Beyond 1-valuedness

Problem

Is sequentiality decidable for tropical recognisable series ?

Some answers in four special cases

1. Unary tropical series

2. Heap automata

3. Finitely ambiguous automata

4. Polynomialy ambiguous automata
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Unary tropical series

Theorem (Gaubert 94, Lombardy 01)

Sequentiality is decidable for tropical recognisable series
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Heap automata

aα
α′

aα
α′ b

β′
β

A heap model. . .

1 2 3

a |α, b |0 a |α′, b |β′ a |0, b |β
a |α′

a |α b |β

b |β′

. . . and its heap automaton
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Â << <A

As Ds



Heap automata

A = (I , µ,T ) GA =
{
[I · µ(w)]�

∣∣∣ w ∈ A∗
}

Super-sequentialisation of A based
on completion of vectors of KQ .

HA =

{[
I · µ(w)

]� ∣∣∣∣ w ∈ A∗
}

Theorem (Gaubert and Mairesse 99)

Let A be a heap automaton.
HA is the set of states of

a sequential automaton

<< <

A that realizes A

A
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Heap automata

Theorem (Gaubert and Mairesse 99)

HA is the set of states of

a sequential automaton

<< <

A that realizes A
Problem

� Is finiteness of HA decidable ?

� Is HA finite when A is sequential ?

Problem solved for the two-piece case

Theorem (Mairesse and Vuillon 02)

[Besides trivial cases]
A two-letter heap automaton A is sequentialisable

iff either α′ = β′ = 0 or α/β ∈ Q

A

Â << <A

As Ds

<< <

A
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Finitely ambiguous tropical automata

A is finitely ambiguous if
the number of paths labeled by a word w

is uniformely bounded.

Proposition (Klimann Lombardy Mairesse Prieur 04)

Sequentiality is decidable for finitely ambiguous tropical automata.

Proposition (Klimann Lombardy Mairesse Prieur 04)

It is decidable whether a finitely ambiguous tropical automata
is equivalent to a 1-valued one.

Proposition (Mandel Simon 77)

Finite ambiguity is decidable.

Proposition (Hashiguchi Ishiguro Jimbo 02)

Equivalence is decidable for finitely ambiguous tropical automata.
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Polynomially ambiguous tropical automata

A is polynomially ambiguous if
the number of paths labeled by a word w

grows polynomially with the length of w .

Proposition (Kirsten Lombardy 09)

Sequentiality is decidable
for polynomially ambiguous tropical automata.

Proposition (Kirsten Lombardy 09)

It is decidable whether a polynomially ambiguous tropical automata
is equivalent to a 1-valued one.

Proposition (Weber Seidl 91)

Polynomial ambiguity is decidable.

Proposition (Krob 91)

Equivalence is not decidable
for polynomially ambiguous tropical automata.


