Marvels and mysteries of rational base numeration systems

Jacques Sakarovitch

CNRS / Université Paris-Diderot and Telecom Paris

University of Oxford— 19 June 2019

Based on the paper that introduced the rational base numeration systems:

► Powers of rationals modulo 1 and rational base number systems,

Israel J. Math., 2008 with Sh. Akiyama and Ch. Frougny

and subsequent more recent works on the subject:

- ► Trees and languages with periodic signature,

 Indagationes Mathematicae 2017 with V. Marsault
- ► On subtrees of the representation tree in rational base numeration systems,

DMTCS 2018 with Sh. Akiyama and V. Marsault

Outline of the talk

- 1. A problem by Mahler
- 2. Integer and Pisot base numeration systems
- 3. Representation of integers in a rational base
- 4. Representation of reals in a rational base
- 5. When order generates disorder
- 6. A property still missing a proper name (autosimilarity?)
- 7. Complements

Part I

A problem by Mahler

The fractional part of the powers of rational numbers

Notation

$$\theta \in \mathbb{R}$$
 $\{\theta\}$ fractional part of θ

Theorem (Folk & Lore)

 $\forall \theta \in \mathbb{Q}$, the sequence $M(\theta) = \{n\theta\}$ is finite. $\forall \theta \in \mathbb{R} \setminus \mathbb{Q}$, the sequence $M(\theta)$ is uniformly distributed.

Problem

$$\theta \in \mathbb{R}, \ \theta > 1$$
 Distribution of $S(\theta) = (\{\theta^n\})_{n \in \mathbb{N}}$?

Theorem (calculus classic)

For almost all θ , $S(\theta)$ is uniformly distributed.

The fractional part of the powers of rational numbers

Very few results are known for specific values of θ .

Proposition

$$\theta$$
 Pisot \implies 0 is the only limit point of $S(\theta)$ (in \mathbb{R}/\mathbb{Z}).

Experimental results show that $S(\theta)$ looks :

- ullet uniformly distributed for transcendental heta,
- *very chaotic* for rational θ .

Theorem (Pisot ?? — Vijayaraghavan 40)

 θ rational \implies $S(\theta)$ has infinitely many limit points.

Parametrization of the problem

Fix the rational $\frac{p}{q}$, $p>q\geqslant 2$ coprime integers.

New problem

$$\xi \in \mathbb{R}$$
 Distribution of $M_{\frac{p}{q}}(\xi) = \left(\left\{\xi\left(\frac{p}{q}\right)^n\right\}\right)_{p \in \mathbb{N}}$?

Theorem (the same as before)

For almost all ξ , $M_{\frac{p}{a}}(\xi)$ is uniformly distributed.

Notation

$$I \subseteq [0,1[$$
 I will be a finite union of semi-closed intervals.

$$\mathbf{Z}_{rac{p}{g}}(I) = \{ \xi \in \mathbb{R} \mid M_{rac{p}{g}}(\xi) \text{ is eventually contained in } I \}$$
 .

Two directions of research:

Look for I as large as possible such that $\mathbf{Z}_{\frac{p}{q}}(I)$ is empty. Look for I as small as possible such that $\mathbf{Z}_{\frac{p}{q}}(I)$ is non empty.

Notation

 $I \subseteq [0,1]$ / will be a finite union of semi-closed intervals.

$$\mathbf{Z}_{rac{p}{q}}(I) = \{ \xi \in \mathbb{R} \mid M_{rac{p}{q}}(\xi) \quad \text{is eventually contained in } I \ \} \ .$$

Two directions of research:

Look for I as large as possible such that $\mathbf{Z}_{\frac{p}{q}}(I)$ is empty. Look for I as small as possible such that $\mathbf{Z}_{\frac{p}{q}}(I)$ is non empty.

Theorem (Mahler 68)

 $\mathbf{Z}_{\frac{3}{2}}\left(\left[0,\frac{1}{2}\right]\right)$ is at most countable.

Notation

$$I \subsetneq [0,1[$$
 I will be a finite union of semi-closed intervals.

$$\mathbf{Z}_{rac{p}{q}}(I)=\{\xi\in\mathbb{R}\;ig|\;\;\;M_{rac{p}{q}}(\xi)\;\; ext{ is eventually contained in }I\;\}\;\;.$$

Two directions of research:

Look for I as large as possible such that $\mathbf{Z}_{\frac{p}{q}}(I)$ is empty. Look for I as small as possible such that $\mathbf{Z}_{\frac{p}{q}}(I)$ is non empty.

Theorem (Mahler 68)

$$Z_{\frac{3}{2}}\left([0,\frac{1}{2}[\right) \text{ is at most countable.}$$

Is
$$\mathbf{Z}_{\frac{3}{2}}\left(\left[0,\frac{1}{2}\right]\right)$$
 non empty?

Notation

 $I \subsetneq [0,1[$ I will be a finite union of semi-closed intervals.

$$\mathbf{Z}_{rac{p}{q}}(I) = \{ \xi \in \mathbb{R} \; ig| \; M_{rac{p}{q}}(\xi) \; ext{ is eventually contained in } I \; \} \; .$$

Two directions of research:

Look for I as large as possible such that $\mathbf{Z}_{\frac{p}{q}}(I)$ is empty. Look for I as small as possible such that $\mathbf{Z}_{\frac{p}{q}}(I)$ is non empty.

Theorem (Mahler 68)

 $\mathbf{Z}_{\frac{3}{2}}\left(\left[0,\frac{1}{2}\right]\right)$ is at most countable.

Conjecture $\mathbf{Z}_{\frac{3}{2}}\left([0,\frac{1}{2}[\right) \text{ is empty.}\right)$

The search for big I with empty $\mathbf{Z}_{\frac{p}{q}}(I)$

The search for big / with empty $Z_{\frac{\rho}{a}}(I)$

Theorem (Flatto, Lagarias, Pollington 95)

The set of reals
$$s$$
 such that $\mathbf{Z}_{\frac{p}{q}}\left([s,s+\frac{1}{p}[
ight)]$ is empty is dense in $\left[0,1-\frac{1}{p}\right]$.

Theorem (Bugeaud 04)

The same set is of Lebesgue measure $1-\frac{1}{p}$.

The search for big / with empty $\mathbf{Z}_{\frac{p}{a}}(I)$

Theorem (Flatto, Lagarias, Pollington 95)

The set of reals
$$s$$
 such that $\mathbf{Z}_{\frac{p}{q}}\left([s,s+\frac{1}{p}[
ight)]$ is empty is dense in $\left[0,1-\frac{1}{p}\right]$.

Theorem (Bugeaud 04)

The same set is of Lebesgue measure $1-\frac{1}{p}$.

Conjecture The same set is
$$\left[1 - \frac{1}{p}\right]$$
.

The search for small I with non empty $\mathbf{Z}_{\frac{p}{q}}(I)$

The search for small I with non empty $\mathbf{Z}_{\frac{p}{q}}(I)$

Theorem (Pollington 81)

 $\mathbf{Z}_{\frac{3}{2}}\left(\left[\frac{4}{65},\frac{61}{65}\right]\right)$ is non empty.

The search for small I with non empty $Z_{\frac{\rho}{a}}(I)$

Theorem (Pollington 81)

$$Z_{\frac{3}{2}}\left(\left[\frac{4}{65}, \frac{61}{65}\right]\right)$$
 is non empty.

Theorem (A.-F.-S. 05)

Let
$$p\geqslant 2q-1$$
. There exists $Y_{\frac{p}{q}}\subset [0,1[$ of measure $\frac{q}{p}$ such that $\mathbf{Z}_{\frac{p}{q}}\left(Y_{\frac{p}{q}}\right)$ is (countably) infinite.

The search for small I with non empty $Z_{\frac{p}{a}}(I)$

$$Z_{\frac{3}{2}}([\frac{4}{65}, \frac{61}{65}[)$$
 is non empty.

Theorem (A.-F.-S. 05)

Let $p\geqslant 2q-1$. There exists $Y_{\frac{p}{q}}\subset [0,1[$ of measure $\frac{q}{p}$ such that $\mathbf{Z}_{\frac{p}{q}}\left(Y_{\frac{p}{q}}\right)$ is (countably) infinite.

Indeed
$$\mathbf{Z}_{\frac{p}{q}}\left(Y_{\frac{p}{q}}\right) = \{\xi \in \mathbb{R}_+ \mid \xi \text{ has two } \frac{p}{q}\text{-expansions } \}$$
.

The search for small I with non empty $\mathbf{Z}_{\frac{\rho}{a}}(I)$

$$Z_{\frac{3}{2}}([\frac{4}{65}, \frac{61}{65}[)$$
 is non empty.

Theorem (A.-F.-S. 05)

Let
$$p\geqslant 2q-1$$
. There exists $Y_{\frac{p}{q}}\subset [0,1[$ of measure $\frac{q}{p}$ such that $\mathbf{Z}_{\frac{p}{q}}\left(Y_{\frac{p}{q}}\right)$ is (countably) infinite.

Indeed
$$\mathbf{Z}_{\frac{p}{q}}\left(Y_{\frac{p}{q}}\right)=\{\xi\in\mathbb{R}_{+}\mid\xi \text{ has two }\frac{p}{q}\text{-expansions }\}$$
 .

What this means is what this talk is about.

Part II

Integer and Pisot base numeration systems

Numbers do exist

$$\frac{\pi}{4} = \frac{C}{P} = \frac{D}{S}$$

Numbers do exist

But you have to write them in order to compute with them

 $N \in \mathbb{N}$

Representation of N in base 3: word in $A_3 = \{0, 1, 2\}^*$

word in
$$A_3 = \{0, 1, 2\}$$

 $N \in \mathbb{N}$

Representation of N in base 3:

word in
$$A_3 = \{0, 1, 2\}^*$$

$$\langle N \rangle_3 = a_k \, a_{k-1} \dots a_1 \, a_0$$

$$N = \sum_{0}^{k} a_i 3^i$$

$$N \in \mathbb{N}$$

Representation of
$$N$$
 in base 3:

word in
$$A_3 = \{0, 1, 2\}^*$$

$$\langle N \rangle_3 = a_k \, a_{k-1} \dots a_1 \, a_0$$

$$N = \sum_{i=1}^{k} a_{i} 3^{i}$$

$$L_3 = \{ \langle N \rangle_3 \, | \, N \in \mathbb{N} \} = A_3^* \setminus 0 \, A_3^*$$

$\textbf{Base} \ 3 \ \textbf{numeration system}$

	0	111	13
1	1	112	14
2	2	120	15
10	3	121	16
11	4	122	17
12	5	200	18
20	6	201	19
21	7	202	20
22	8	210	21
100	9	211	22
101	10	212	23
102	11	220	24
110	12	221	25

$$L_3 = \{ \langle N \rangle_3 \mid N \in \mathbb{N} \} = A_3^* \setminus 0 A_3^*$$

0000 | 0

0000	0	0111	13
0001	1	0112	14
0002	2	0120	15
0010	3	0121	16
0011	4	0122	17
0012	5	0200	18
0020	6	0201	19
0021	7	0202	20
0022	8	0210	21
0100	9	0211	22
0101	10	0212	23
0102	11	0220	24
0110	12	0221	25

$$L_3' = \{ \langle N \rangle_3 \mid N \in \mathbb{N} \} = A_3^*$$

Computation of representations in base 3: the integers

$$V = \left\{v_i = \left(3\right)^i \;\middle|\; i \in \mathbb{N}
ight\}$$
 together with $A_3 = \left\{0, 1, 2\right\}$

Greedy algorithm
$$N \in \mathbb{N}$$
 $\exists k$ $3^{k+1} > N \geqslant 3^k$

$$N_k = N$$
 $N_{k-1} = N_k - a_k 3^k$
 $a_k \in A$, $3^k > N_{k-1}$
 $N_{k-2} = N_{k-1} - a_{k-1} 3^{k-1}$
 $a_{k-1} \in A$, $3^{k-1} > N_{k-2}$
...

$$N = \sum_{i=0}^{k} a_i 3^i \qquad \langle N \rangle_3 = a_k a_{k-1} \dots a_1 a_0$$

Computation of representations in base 3: the integers

$$V = \left\{v_i = \left(3\right)^i \;\middle|\; i \in \mathbb{N}
ight\}$$
 together with $A_3 = \left\{0, 1, 2\right\}$

Division algorithm $N \in \mathbb{N}$

$$N\in\mathbb{N}$$

$$N'_0 = N$$
 $N'_0 = 3 N'_1 + a_0$ $a_0 \in A$
 $N'_1 = 3 N'_2 + a_1$ $a_1 \in A$

$$N = \sum_{i=1}^{k} a_i 3^i \qquad \langle N \rangle_3 = a_k a_{k-1} \dots a_1 a_0$$

Computation of representations in base 3: the integers

$$V=\left\{v_i=\left(3
ight)^i\;\middle|\;i\in\mathbb{N}
ight\}$$
 together with $A_3=\left\{0,1,2
ight\}$

Division algorithm $17 \in \mathbb{N}$

$$N'_0 = 17$$
 $17 = N'_0 = 3 \cdot 5 + 2$
 $5 = N'_1 = 3 \cdot 1 + 2$
 $1 = N'_2 = 3 \cdot 0 + 1$
 $a_0 = 2 \in A$
 $a_1 = 2 \in A$
 $a_2 = 1 \in A$
 $a_1 = 2 \in A$
 $a_2 = 1 \in A$

 $(17)_3 = 122$

Computation of representations in base 3: the reals

$$V = \left\{ v_i = (3)^i \mid i \in \mathbb{Z} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

Computation of representations in base 3: the reals

$$V = \left\{ v_i = \left(3\right)^i \mid i \in \mathbb{Z} \right\}$$
 together with $A_3 = \left\{0, 1, 2\right\}$

$$x \in \mathbb{R}$$

Greedy algorithm
$$x \in \mathbb{R}$$
 $\exists k$ $3^{k+1} > x \geqslant 3^k$

$$x_k = x$$
 $x_{k-1} = x_k - a_k 3^k$
 $a_k \in A$, $3^k > x_{k-1}$
 $x_{k-2} = x_{k-1} - a_{k-1} 3^{k-1}$
 $a_{k-1} \in A$, $3^{k-1} > x_{k-2}$
...

$$x = \sum_{i=1}^{k} a_{i} 3^{i}$$
 $\langle x \rangle_{3} = a_{k} a_{k-1} \dots a_{1} a_{0} \cdot a_{-1} a_{-2} \dots$

Computation of representations in base 3: the reals

$$V = \left\{ v_i = (3)^i \mid i \in \mathbb{Z} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

Greedy algorithm
$$x \in [0, 1[$$

$$x_1 = x$$
 $a_i = \lfloor 3x_i \rfloor$ $x_{i+1} = \{3x_i\}$

$$x = \sum_{i=1}^{\infty} a_i 3^{-i} \qquad \langle x \rangle_3 = \cdot a_1 a_2 a_3 \dots$$

Integer base numeration systems and finite automata

Blaise Pascal in De numeris multiplicibus \sim 1650

The p-representations of the integers divisible by $\ k$ is recognised by a finite automaton.

Integer base numeration systems and finite automata

Blaise Pascal in De numeris multiplicibus \sim 1650

The p-representations of the integers divisible by k is recognised by a finite automaton.

Addition in base 3

Addition in base 3

	2	1	1	1	0		2	1	1	1	0
	2	0	1	2	1		2	0	1	2	1
1	1	2	0	0	1		4	1	2	3	1

Addition in base 3 is a normalisation

$$\nu \colon \{0, 1, 2, 3, 4\}^* \longrightarrow \{0, 1, 2\}^*$$

Addition in base 3 is a normalisation

$$\nu \colon \{0,1,2,3,4\}^* \longrightarrow \{0,1,2\}^*$$

Addition in base 3 is a normalisation

$$v: \{0, 1, 2, 3, 4\}^* \longrightarrow \{0, 1, 2\}^*$$

$$\leftarrow \begin{array}{c} \leftarrow \\ 1 \end{array} \text{C} \leftarrow \begin{array}{c} 4 \\ 1 \end{array} \text{N} \leftarrow \begin{array}{c} 1 \\ 2 \end{array} \text{C} \leftarrow \begin{array}{c} 2 \\ 0 \end{array} \text{C} \leftarrow \begin{array}{c} 3 \\ 0 \end{array} \text{N} \leftarrow \begin{array}{c} 1 \\ 1 \end{array} \text{N} \leftarrow \begin{array}{$$

Proposition (Folk & Lore)

Proposition (Folk & Lore)

$$\nu \colon \{\bar{1}, 0, 1, 2, 3, 4\}^* \longrightarrow \{0, 1, 2\}^*$$

Proposition (Folk & Lore)

$$\nu \colon \{\overline{1}, 0, 1, 2, 3, 4\}^* \longrightarrow \{0, 1, 2\}^*$$

Proposition (Folk & Lore)

$$\nu \colon \{\overline{1}, 0, 1, 2, 3, 4\}^* \longrightarrow \{0, 1, 2\}^*$$

Proposition (Folk & Lore)

$$\nu \colon \{\bar{1}, 0, 1, 2, 3, 4\}^* \longrightarrow \{0, 1, 2\}^*$$

Proposition (Folk & Lore)

$$\nu \colon \{\bar{1}, 0, 1, 2, 3, 4\}^* \longrightarrow \{0, 1, 2\}^*$$

3 an integer
$$> 1$$

$$V = \left\{ v_i = (3)^i \mid i \in \mathbb{Z} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

$$\beta$$
 any real number > 1

$$V = \left\{ v_i = \left(eta
ight)^i \;\middle|\; i \in \mathbb{Z}
ight\} \quad ext{together with} \quad A_eta = \left\{ 0, 1, \dots, \left\lceil eta
ight
ceil - 1
ight\}$$

$$\beta$$
 any real number > 1

$$V = \left\{ v_i = (\beta)^i \mid i \in \mathbb{Z} \right\}$$
 together with $A_\beta = \{0, 1, \dots, \lceil \beta \rceil, -1\}$

Greedy algorithm (Rényi 57)

$$x \in [0,1[$$

$$x_1 = x$$
 $a_i = \lfloor \frac{\beta}{\beta} x_i \rfloor$ $x_{i+1} = \{ \frac{\beta}{\beta} x_i \}$

$$x = \sum_{i=1}^{\infty} a_i \, \beta^{-i} \qquad \langle x \rangle_{\beta} = a_1 \, a_2 \, a_3 \dots$$

$$eta$$
 any real number >1

$$V = \left\{ v_i = (\beta)^i \mid i \in \mathbb{Z} \right\}$$
 together with $A_\beta = \{0, 1, \dots, \lceil \beta \rceil - 1\}$

$$\beta$$
 Pisot \Longrightarrow $L_{\beta} = \{\langle x \rangle_{\beta} \mid x \in \mathbb{R}\} \in \operatorname{Rat} A_{\beta}^{\mathbb{N}}$

$$eta$$
 any real number >1

$$V = \left\{ v_i = (eta)^i \;\middle|\; i \in \mathbb{Z}
ight\} \quad ext{together with} \quad A_eta = \{0, 1, \dots, \lceil eta
ceil^{-1}\}$$

Theorem (Parry 60)

$$\beta$$
 Pisot \Longrightarrow $L_{\beta} = \{\langle x \rangle_{\beta} \mid x \in \mathbb{R}\} \in \operatorname{Rat} A_{\beta}^{\mathbb{N}}$

Theorem (Berend-Frougny 96)

eta is Pisot iff in base eta, normalisation from any alphabet of digits is realised by a letter-to-letter (finite) transducer.

Part III

Representation of integers in a rational base

The base $\frac{3}{2}$ numeration system — the β numeration approach

$$rac{3}{2}$$
 a real number >1

$$V=\left\{v_i=\left(rac{3}{2}
ight)^i \;\middle|\; i\in\mathbb{Z}
ight\}$$
 together with $A_{rac{3}{2}}=\{0,\ldots,\left\lceilrac{3}{2}
ight
ceil}$ $-1\}=\{0,1\}$

The base $\frac{3}{2}$ numeration system — the β numeration approach $\frac{3}{2}$ a real number > 1 not a Pisot number

$$\frac{1}{2}$$
 a real number > 1 flot a risot number

$$V = \left\{ v_i = \left(\frac{3}{2}\right)^i \mid i \in \mathbb{Z} \right\}$$
 together with $A_{\frac{3}{2}} = \{0, \dots, \left\lceil \frac{3}{2} \right\rceil - 1\} = \{0, 1\}$

The base $\frac{3}{2}$ numeration system — the β numeration approach $\frac{3}{2}$ a real number >1 not a Pisot number

$$V = \left\{ v_i = \left(\frac{3}{2}\right)^i \;\middle|\; i \in \mathbb{Z}
ight\} \; ext{together with} \; A_{\frac{3}{2}} = \{0,\dots,\left\lceil \frac{3}{2}
ight\rceil - 1\} = \{0,1\}$$

Greedy algorithm
$$x \in \mathbb{R}$$
 $\exists k$ $\left(\frac{3}{2}\right)^{k+1} > x \geqslant \left(\frac{3}{2}\right)^k$ $x_k = x$ $x_{k-1} = x_k - a_k \left(\frac{3}{2}\right)^k$ $a_k \in A$, $\left(\frac{3}{2}\right)^k > x_{k-1}$

$$x = \sum_{-\infty}^{k} a_{i} \left(\frac{3}{2}\right)^{i} \qquad \langle x \rangle_{W} = a_{k} a_{k-1} \dots a_{1} a_{0} \cdot a_{-1} a_{-2} \dots$$
$$\langle 2 \rangle_{W} = 10.010000010 \dots$$

$$\frac{3}{2}$$
 a real number >1

$$U = \left\{ u_i = \frac{1}{2} \left(\frac{3}{2} \right)^i \mid i \in \mathbb{N} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

$$\frac{3}{2}$$
 a real number > 1

$$U = \left\{ u_i = \frac{1}{2} \left(\frac{3}{2} \right)^i \mid i \in \mathbb{N} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

Modified division algorithm $N \in \mathbb{N}$

$$2 N_0 = 3 N_1 + a_0$$
 $a_0 \in A$
 $2 N_1 = 3 N_2 + a_1$ $a_1 \in A$

 $N_0 = N$

$$N = \sum_{i=0}^{k} a_{i} \frac{1}{2} \left(\frac{3}{2} \right)^{i} \qquad \langle N \rangle_{\frac{3}{2}} = a_{k} a_{k-1} \dots a_{1} a_{0}$$

$$\frac{3}{2}$$
 a real number > 1

$$U = \left\{ u_i = \frac{1}{2} \left(\frac{3}{2} \right)^i \mid i \in \mathbb{N} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

Modified division algorithm $5 \in \mathbb{N}$

$$N_0 = 5$$
 $2 N_0 = 2 \cdot 5 = 3 \cdot 3 + 1$
 $2 N_1 = 2 \cdot 3 = 3 \cdot 2 + 0$
 $2 N_2 = 2 \cdot 2 = 3 \cdot 1 + 1$
 $1 \in A$
 $2 N_3 = 2 \cdot 1 = 3 \cdot 0 + 2$
 $1 \in A$

$$5 = \frac{1}{2} \left[\left(\left((2) \cdot \frac{3}{2} + 1 \right) \cdot \frac{3}{2} + 0 \right) \cdot \frac{3}{2} + 1 \right]$$
 $\langle 5 \rangle_{\frac{3}{2}} = 2101$

$$U = \left\{ u_i = \frac{1}{2} \left(\frac{3}{2} \right)^i \mid i \in \mathbb{N} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

$$U = \left\{ u_i = \frac{1}{2} \left(\frac{3}{2} \right)^t \mid i \in \mathbb{N} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

$$U = \left\{ u_i = \frac{1}{2} \left(\frac{3}{2} \right)^i \mid i \in \mathbb{N} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

Theorem

Every N in $\mathbb N$ has an integer representation in the $\frac{3}{2}$ -system. It is the unique finite $\frac{3}{2}$ -representation of N.

$$U = \left\{ u_i = \frac{1}{2} \left(\frac{3}{2} \right)^i \mid i \in \mathbb{N} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

Theorem

Every N in $\mathbb N$ has an integer representation in the $\frac32$ -system. It is the unique finite $\frac32$ -representation of N .

We call this representation the $\frac{3}{2}$ -expansion of N and we denote it by $\langle N \rangle_{\frac{3}{2}}$.

$$U = \left\{ u_i = \frac{1}{2} \left(\frac{3}{2} \right)^i \mid i \in \mathbb{N} \right\}$$
 together with $A_3 = \{0, 1, 2\}$

Theorem

Every N in $\mathbb N$ has an integer representation in the $\frac{3}{2}$ -system. It is the unique finite $\frac{3}{2}$ -representation of N .

We call this representation the $\frac{3}{2}$ -expansion of N and we denote it by $\langle N \rangle_{\frac{3}{2}}$.

$$L_{\frac{3}{2}} = \left\{ \langle N \rangle_{\frac{3}{2}} \middle| N \in \mathbb{N} \right\} = ????$$

	0	212211	17
2	1	2101100	18
21	2	2101102	19
210	3	2101121	20
212	4	2120010	21
2101	5	2120012	22
2120	6	2120201	23
2122	7	2120220	24
21011	8	2120222	25
21200	9	2122111	26
21202	10	21011000	27
21221	11	21011002	28
210110	12	21011021	29
210112	13	21011210	30
212001	14	21011212	31
212020	15	21200101	32
212022	16	21200120	33

The tree $T_{\frac{3}{2}}$ of the $\frac{3}{2}$ -expansions

 $L_{\frac{3}{2}}$ prefix-closed \Longrightarrow $L_{\frac{3}{2}}$ spans the edges of a subtree $T_{\frac{3}{2}}$ of the full 3-ary tree.

The nodes of $T_{\frac{3}{2}}$ are labeled by the integers.

The label of a node is the integer represented by the label of the path from the root to that node.

These labels give the radix order in $L_{\frac{3}{2}}$.

The tree $T_{\frac{3}{2}}$ of the $\frac{3}{2}$ -expansions

$$L_{rac{3}{2}}$$
 prefix-closed \implies $L_{rac{3}{2}}$ spans the edges of a subtree $T_{rac{3}{2}}$ of the full 3-ary tree.

The nodes of $T_{\frac{3}{2}}$ are labeled by the integers.

The label of a node is the integer represented by the label of the path from the root to that node.

These labels give the radix order in $L_{\frac{3}{2}}$.

Any two distinct subtrees of $T_{\frac{3}{2}}$ are not isomorphic.

The FLIP property

 $L \subseteq A^*$

The FLIP property

$$L \subseteq A^*$$

Definition

L has the Finite Left Iteration Property (FLIP) if

$$\forall u, v \in A^*$$
 $\{i \in \mathbb{N} \mid u v^i \in Pre(L)\}$ is finite.

The FLIP property

$$L \subseteq A^*$$

Definition

L has the Finite Left Iteration Property (FLIP) if

$$\forall u, v \in A^*$$
 $\{i \in \mathbb{N} \mid u v^i \in Pre(L)\}$ is finite.

(Equivalently, if Pre(L) meets the *IRS* condition.)

The FLIP property

$$L \subseteq A^*$$

Definition

L has the Finite Left Iteration Property (FLIP) if

$$\forall u, v \in A^*$$
 $\{i \in \mathbb{N} \mid u v^i \in Pre(L)\}$ is finite.

(Equivalently, if Pre(L) meets the *IRS* condition.)

Proposition

 $L_{\frac{p}{a}}$ is a FLIP language.

The FLIP property

$$L \subseteq A^*$$

Definition

L has the Finite Left Iteration Property (FLIP) if

$$\forall u, v \in A^*$$
 $\{i \in \mathbb{N} \mid u v^i \in Pre(L)\}$ is finite.

(Equivalently, if Pre(L) meets the *IRS* condition.)

Proposition

$$L_{\underline{p}}$$
 is a FLIP language.

Corollary

 $L_{\frac{p}{q}}$ is not a regular language, not a context-free language, not known to belong to any subclass of context-sensitive languages.

Digit conversion

D finite digit alphabet, that contains A.

$$\chi_D \colon D^* \to A^* \qquad \forall w \in D^* \qquad \pi(\chi_D(w)) = \pi(w) .$$

Proposition

For every D , χ_D is realised by a letter-to letter sequential right transducer.

Digit conversion

D finite digit alphabet, that contains A.

$$\chi_D \colon D^* \to A^* \qquad \forall w \in D^* \qquad \pi(\chi_D(w)) = \pi(w) .$$

Proposition

For every D , χ_D is realised by a letter-to letter sequential right transducer.

Part IV

Representation of reals in a rational base

1 00, 0 1,

Representation of reals in base 3: the tree T_3'

$$A_3^{\mathbb{N}}=$$
 labels of the *infinite paths* in T_3' $\mathbf{a}=\{a_i\}_{i\geqslant 1}\in A_3^{\mathbb{N}}$

Definition

a is an expansion in base 3 of the real $x \in [0,1]$ defined by:

$$x = \pi(\cdot \mathbf{a}) = \sum_{i>1} a_i \left(\frac{1}{3}\right)^i.$$

$$A_3^{\mathbb{N}}=$$
 labels of the *infinite paths* in T_3' $\mathbf{a}=\{a_i\}_{i\geqslant 1}\in A_3^{\mathbb{N}}$

Definition

a is an expansion in base 3 of the real $x \in [0,1]$ defined by:

$$x = \pi(.\mathbf{a}) = \sum_{i>1} a_i \left(\frac{1}{3}\right)^i.$$

Every real in [0,1] has (at least) one expansion in base 3.

$$A_3^{\mathbb{N}}=$$
 labels of the *infinite paths* in T_3' $\mathbf{a}=\{a_i\}_{i\geqslant 1}\in A_3^{\mathbb{N}}$

Definition

a is an expansion in base 3 of the real $x \in [0,1]$ defined by:

$$x = \pi(.\mathbf{a}) = \sum_{i > 1} a_i \left(\frac{1}{3}\right)^i.$$

Every real in [0,1] has (at least) one expansion in base 3.

Every real in [0,1] has at most two expansions in base 3.

$$A_3^\mathbb{N}=$$
 labels of the *infinite paths* in T_3' $\mathbf{a}=\{a_i\}_{i\geqslant 1}\in A_3^\mathbb{N}$

Definition

a is an expansion in base 3 of the real $x \in [0,1]$ defined by:

$$x = \pi(\cdot \mathbf{a}) = \sum_{i \geqslant 1} a_i \left(\frac{1}{3}\right)^i.$$

Every real in [0,1] has (at least) one expansion in base 3.

Every real in [0,1] has at most two expansions in base 3.

The set of reals in [0,1] which have two expansions is infinite countable.

Representation of reals in base $\frac{3}{2}$: the tree $T'_{\frac{3}{2}}$

Representation of reals in base $\frac{3}{2}$: the tree $T'_{\frac{3}{2}}$

Representation of reals in base $\frac{3}{2}$: the tree $T'_{\frac{3}{2}}$

$$W_{rac{3}{2}}=$$
 labels of the *infinite paths* in $T'_{rac{3}{2}}$ $\mathbf{a}=\{a_i\}_{i\geqslant 1}\in A_3^{\mathbb{N}}$

Definition

 ${f a}$ is an expansion in base $\frac{3}{2}$ (of a real x) iff ${f a} \in W_{\frac{3}{2}}$.

Such an **a** is **a** $\frac{3}{2}$ -expansion of the real x defined by:

$$x = \pi(\cdot \mathbf{a}) = \sum_{i \ge 1} a_i \frac{1}{2} \left(\frac{2}{3}\right)^i.$$

$$W_{rac{3}{2}}$$
 = labels of the *infinite paths* in $T'_{rac{3}{2}}$ $\mathbf{a}=\{a_i\}_{i\geqslant 1}\in A_3^\mathbb{N}$

Definition

a is an expansion in base $\frac{3}{2}$ (of a real x) iff $\mathbf{a} \in W_{\frac{3}{2}}$.

Such an **a** is **a** $\frac{3}{2}$ -expansion of the real x defined by:

$$x = \pi(\cdot \mathbf{a}) = \sum_{i>1} a_i \frac{1}{2} \left(\frac{2}{3}\right)^i.$$

$$W_{rac{3}{2}}$$
 contains a maximal word. $\mathbf{t}_{rac{3}{2}}$ $\omega_{rac{3}{2}}=\pi(\mathbf{.t}_{rac{3}{2}})$

$$\mathbf{t}_{\frac{3}{2}} = 212211122121122121212121\cdots$$
 $\langle \boldsymbol{\omega}_{\frac{3}{2}} \rangle_{10} = 1.622270502884767315956950982\cdots$

$$W_{rac{3}{2}}=$$
 labels of the *infinite paths* in $T'_{rac{3}{2}}$ $\mathbf{a}=\{a_i\}_{i\geqslant 1}\in A_3^{\mathbb{N}}$

Definition

 ${f a}$ is an expansion in base $\frac{3}{2}$ (of a real x) iff ${f a} \in W_{\frac{3}{2}}$.

Such an **a** is **a** $\frac{3}{2}$ -expansion of the real x defined by:

$$x = \pi(\cdot \mathbf{a}) = \sum_{i \ge 1} a_i \frac{1}{2} \left(\frac{2}{3}\right)^i.$$

$$W_{\frac{3}{2}}$$
 = labels of the *infinite paths* in $T'_{\frac{3}{2}}$ $\mathbf{a}=\{a_i\}_{i\geqslant 1}\in A_3^{\mathbb{N}}$

Definition

 $\mathbf{a} \ \text{ is an expansion in base } \ \frac{3}{2} \ \left(\text{of a real } \ x \ \right) \ \text{iff} \ \ \mathbf{a} \in W_{\frac{3}{2}} \ .$

Such an **a** is **a** $\frac{3}{2}$ -expansion of the real x defined by:

$$x = \pi(\cdot \mathbf{a}) = \sum_{i>1} a_i \frac{1}{2} \left(\frac{2}{3}\right)^i.$$

Theorem (A.-F.-S. 05)

Every real of $[0, \omega_{\frac{3}{2}}]$ has (at least) one $\frac{3}{2}$ -expansion.

Representation of reals in base $\frac{3}{2}$: the tree $T'_{\frac{3}{2}}$

The set of reals of $[0,\omega_{\frac{3}{2}}]$ that have more than one $\frac{3}{2}$ -expansion is infinite countable.

The set of reals of $[0,\omega_{\frac{3}{2}}]$ that have more than one $\frac{3}{2}$ -expansion is infinite countable.

No element of $W_{\frac{3}{2}}$, but 0^{ω} , is eventually periodic.

The set of reals of $[0,\omega_{\frac{3}{2}}]$ that have more than one $\frac{3}{2}$ -expansion is infinite countable.

No element of $W_{\frac{3}{2}}$, but 0^{ω} , is eventually periodic.

The finite prefixes of a $\frac{3}{2}$ -expansion, completed with 0's, are not $\frac{3}{2}$ -expansions.

The set of reals of $\left[0,\omega_{\frac{3}{2}}\right]$ that have more than one $\frac{3}{2}$ -expansion is infinite countable.

No element of $W_{\frac{3}{2}}$, but 0^{ω} , is eventually periodic.

The finite prefixes of a $\frac{3}{2}$ -expansion, completed with 0's, are not $\frac{3}{2}$ -expansions.

Every real in $[0, \omega_{\frac{3}{2}}]$ has at most two $\frac{3}{2}$ -expansions.

The set of reals of $\left[0,\omega_{\frac{3}{2}}\right]$ that have more than one $\frac{3}{2}$ -expansion is infinite countable.

No element of $W_{\frac{3}{2}}$, but 0^{ω} , is eventually periodic.

The finite prefixes of a $\frac{3}{2}$ -expansion, completed with 0's, are not $\frac{3}{2}$ -expansions.

Every real in $[0, \omega_{\frac{3}{2}}]$ has at most two $\frac{3}{2}$ -expansions.

The set of reals in $\left[0,\omega_{\frac{3}{2}}\right]$ which have two expansions is infinite countable.

Part V

When order generates disorder

Meta theorem

The $T_{\frac{p}{q}}$ are characterised by their *periodic signature*.

Definition

Signature of an ordered tree $\mathcal{T}=$ sequence of the degrees of the nodes in the breadth-first traversal of \mathcal{T}

 $Signature = sequence \ of \ the \ degrees$

s =

 $Signature = sequence \ of \ the \ degrees$

$$s = 2$$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

$$s = 21$$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

$$s = 2 1 2$$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

$$s = 2 1 2 1$$

 $Signature = sequence \ of \ the \ degrees$

$$s = 2 1 2 1 2$$

 $Signature = sequence \ of \ the \ degrees$

$$s = 2 1 2 1 2 1$$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

 $\mathbf{s} = 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

 $\mathbf{s} = 2 1 2 1 2 1 2 1$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

 $\mathbf{s} = 2 1 2 1 2 1 2 1 2$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

s = 2 1 2 1 2 1 2 1 2 1

 $Signature = sequence \ of \ the \ degrees$

 $Signature = sequence \ of \ the \ degrees$

 $Signature = sequence \ of \ the \ degrees$

Signature = sequence of the degrees

Signature = sequence of the degrees

Signature = sequence of the degrees

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

 $Signature = sequence \ of \ the \ degrees$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

 ${\sf Signature} = {\sf sequence} \ {\sf of} \ {\sf the} \ {\sf degrees}$

 $Signature = sequence \ of \ the \ degrees$

Arcs of $\mathcal T$ labelled in an ordered alphabet A

Definition

Labelled signature of an ordered tree $\mathcal{T}=$ signature of $\mathcal{T}+$ sequence of the labels of the arcs in the breadth-first traversal of \mathcal{T}

labelled signature (s, λ)

$$s =$$

$$\mathbf{s} = 2$$
 $\boldsymbol{\lambda} = 0.2$

$$\mathbf{s} = 2 1$$

 $\boldsymbol{\lambda} = 021$

$$s = 2 1 2$$

 $\lambda = 02102$

$$\mathbf{s} = 2 \ 1 \ 2 \ 1$$

 $\lambda = 02 \ 1 \ 02 \ 1$

$$\mathbf{s} = 2 \ 1 \ 2 \ 1 \ 2$$

 $\lambda = 02 \ 1 \ 02 \ 1 \ 02$

$$\mathbf{s} = 2 \ 1 \ 2 \ 1 \ 2 \ 1$$

 $\lambda = 02 \ 1 \ 02 \ 1 \ 02 \ 1$

 $\mathbf{s} = 2 \ 1 \ 2 \ 1$

$$\mathbf{s} = 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ \cdots$$
 $\boldsymbol{\lambda} = 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ \cdots$

$$\mathbf{s} = 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ \cdots$$

 $\boldsymbol{\lambda} = 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ \cdots$

$$\mathbf{s} = 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ \cdots$$

 $\boldsymbol{\lambda} = 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ \cdots$

 $\mathbf{s} = 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ \cdots$ $\boldsymbol{\lambda} = 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ \cdots$

$$\mathbf{s} = 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ \cdots$$

 $\boldsymbol{\lambda} = 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ \cdots$

$$\mathbf{s} = 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ \cdots$$

 $\boldsymbol{\lambda} = 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ \cdots$

$$\mathbf{s} = 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ \cdots$$

 $\boldsymbol{\lambda} = 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ 02 \ 1 \ \cdots$

$$\mathbf{s} = 2 \ 1 \ 2 \ 1$$

Signature of $T_{\frac{p}{q}}$

p, q coprime integers $p > q \geqslant 1$

Signature of $T_{\frac{p}{q}}$

p, q coprime integers $p > q \geqslant 1$

Theorem

The (labelled) signature of $T_{\frac{p}{q}}$ is purely periodic.

p, q coprime integers $p > q \geqslant 1$

A purely periodic signature

$$\mathbf{s} = \mathbf{r}^{\omega}$$

p, q coprime integers $p > q \geqslant 1$

A purely periodic signature

$$\mathbf{s} = \mathbf{r}^{\omega}$$

Definition

r rhythm of directing parameter (q, p)

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$
 $\sum_{i=1}^{q-1} r_i = p$

p, q coprime integers $p > q \geqslant 1$

A purely periodic signature

$$\mathbf{s} = \mathbf{r}^{\omega}$$

Definition

r rhythm of directing parameter (q, p)

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$
 $\sum_{i=1}^{q-1} r_i = p$

Example

Rhythms of dir. par. (3,5): (3,1,1) (2,2,1) (1,2,2)

p, q coprime integers $p > q \geqslant 1$

Geometric representation

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$

$$path(\mathbf{r}) = y^{r_0} x y^{r_1} x y^{r_2} \cdots x y^{r_{q-1}} x$$

p, q coprime integers $p > q \geqslant 1$

Geometric representation

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$

$$path(\mathbf{r}) = y^{r_0} x y^{r_1} x y^{r_2} \cdots x y^{r_{q-1}} x$$

p, q coprime integers $p > q \geqslant 1$

Geometric representation

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$

$$path(\mathbf{r}) = y^{r_0} x y^{r_1} x y^{r_2} \cdots x y^{r_{q-1}} x$$

Christoffel rhythm $r_{\frac{p}{a}}$

p, q coprime integers $p > q \geqslant 1$

r Christoffel rhythm if path(r) Christoffel word

Christoffel rhythm $r_{\frac{p}{q}}$

p, q coprime integers $p > q \geqslant 1$

r Christoffel rhythm if path(r) Christoffel word path(r) Christoffel word if no integer point between path(r) and slope

Christoffel rhythm $r_{\frac{p}{q}}$

p, q coprime integers $p > q \geqslant 1$

r Christoffel rhythm if $\mathtt{path}(r)$ Christoffel word $\mathtt{path}(r) \ \mathsf{Christoffel} \ \mathsf{word} \quad \mathsf{if} \quad \mathsf{no} \ \mathsf{integer} \ \mathsf{point} \ \mathsf{between} \ \mathtt{path}(r) \ \mathsf{and} \ \mathsf{slope}$

Signature of
$$T_{\frac{p}{q}}$$

p, q coprime integers, $p > q \geqslant 1$

Theorem

The signature of $T_{\underline{\rho}}$ is purely periodic of period $\mathbf{r}_{\underline{\rho}}$.

p, q coprime integers $p > q \ge 1$ alphabet: $\{0, 1, \dots, p-1\}$

p, q coprime integers $p > q \geqslant 1$ alphabet: $\{0, 1, \dots, p-1\}$

Definition

$$\gamma_{\frac{p}{q}} = (0, (q \% p), (2 q \% p), \dots, ((p-1) q \% p)).$$

$$p, q$$
 coprime integers $p > q \geqslant 1$ alphabet: $\{0, 1, \dots, p-1\}$

Definition

$$\gamma_{\frac{p}{a}} = (0, (q\%p), (2q\%p), \dots, ((p-1)q\%p)).$$

Examples

$$\mathbf{r}_{\frac{3}{2}} = (2,1)$$
 $\gamma_{\frac{3}{2}} = 021$ $\mathbf{r}_{\frac{5}{3}} = (2,2,1)$ $\gamma_{\frac{5}{3}} = 03142$

$$p, q$$
 coprime integers $p > q \geqslant 1$ alphabet: $\{0, 1, \dots, p-1\}$

Definition

$$\gamma_{\frac{p}{q}} = (0, (q\%p), (2q\%p), \dots, ((p-1)q\%p)).$$

Examples

$$\mathbf{r}_{\frac{3}{2}} = (2,1)$$
 $\gamma_{\frac{3}{2}} = 021$ $\mathbf{r}_{\frac{5}{3}} = (2,2,1)$ $\gamma_{\frac{5}{3}} = 03142$

Proposition

$$\gamma_{\frac{p}{q}}$$
 is consistent with $\mathbf{r}_{\frac{p}{q}}$

Signature of
$$T_{\frac{p}{q}}$$

p, q coprime integers, $p > q \geqslant 1$

Theorem

The labelled signature of $T_{\frac{p}{a}}$ is purely periodic of period $(\mathbf{r}_{\frac{p}{a}},\gamma_{\frac{p}{a}})$.

Part VI

A property still missing a proper name

Minimal words in $T_{\frac{3}{2}}$

The \mathbf{w}_n^- are all distinct words of $\{0,1\}^\omega$.

Problem

What is the relation between the \mathbf{w}_n^- ?

Problem

What is the relation between the \mathbf{w}_n^- ?

Conjecture?

For every n there exists a finite transducer that takes \mathbf{w}_n^- as input and outputs \mathbf{w}_{n+1}^- .

Problem

What is the relation between the \mathbf{w}_n^- ?

Conjecture?

For every n there exists a finite transducer that takes \mathbf{w}_n^- as input and outputs \mathbf{w}_{n+1}^- .

Stupid remark

True for n = 1, 2.

Problem

What is the relation between the \mathbf{w}_n^- ?

Conjecture?

For every n there exists a finite transducer that takes \mathbf{w}_n^- as input and outputs \mathbf{w}_{n+1}^- .

Stupid remark

True for n = 1, 2.

Theorem

$$\forall n \in \mathbb{N}$$
 $\mathcal{D}_{\frac{3}{2}}(\mathbf{w}_n^-) = \mathbf{w}_{n+1}^-$

Part VII

Complements

Complement 1:

The companion representation and the Mahler problem

The companion $\frac{3}{2}$ -representation

$$h: \mathbb{R}_+ \to \mathbb{Z}$$
 function defined by: $h(z) = 2\lfloor (\frac{3}{2})z \rfloor - 3\lfloor z \rfloor$

Proposition

h is periodic of period 2 and

$$h(z) \in C = \{-1, 0, 1, 2\}$$
 , $\forall z \in \mathbb{R}_+$

The companion $\frac{3}{2}$ -representation

$$h_n(z) = h\left(\left(\frac{3}{2}\right)^{n-1}z\right) = c_n$$

$$\varphi(z) \colon \mathbb{R}_+ \to C^{\mathbb{N}} \qquad \varphi(z) = \mathbf{c} = \cdot c_1 c_2 \cdots c_n \cdots.$$

Proposition

$$\forall z \in \mathbb{R}_+$$
, $\varphi(z)$ is a $\frac{3}{2}$ -representation of $\{z\} = z - \lfloor z \rfloor$.

$$\forall k \in \mathbb{N}, \ c_k c_{k+1} c_{k+2} \cdots \text{ is a } \frac{3}{2} \text{-representation of } \left\{ (\frac{3}{2})^{k-1} z \right\}.$$

The companion $\frac{3}{2}$ -representation

$$h_n(z) = h\left(\left(\frac{3}{2}\right)^{n-1}z\right) = c_n$$

$$\varphi(z) \colon \mathbb{R}_+ \to C^{\mathbb{N}} \qquad \varphi(z) = \mathbf{c} = \cdot c_1 c_2 \cdots c_n \cdots.$$

Proposition

$$\forall z \in \mathbb{R}_+$$
, $arphi(z)$ is a $rac{3}{2}$ -representation of $\{z\} = z - \lfloor z \rfloor$.

$$\forall k \in \mathbb{N}$$
, $c_k c_{k+1} c_{k+2} \cdots$ is a $\frac{3}{2}$ -representation of $\left\{ (\frac{3}{2})^{k-1} z \right\}$.

Proposition

$$\forall k \in \mathbb{N} , h_k(z) = 0 \implies \left\{ \left(\frac{3}{2}\right)^{k-1}z \right\} \in \left[0, \frac{1}{3}\right].$$

$$\forall k \in \mathbb{N} , h_k(z) = 1 \implies \left\{ \left(\frac{3}{2}\right)^{k-1}z \right\} \in \left[\frac{2}{3}, 1\right].$$

$$\forall k \in \mathbb{N} \text{ , } h_k(z) = 1 \implies \left\{ (\frac{3}{2})^{k-1} z \right\} \in \left[\frac{2}{3}, 1\right[$$

The right converter from C^* to A^*

$$\textit{C} = \{-1, 0, 1, 2\}$$
 contains \textit{A}_3 .

$$\chi_{\mathcal{C}} \colon \mathcal{C}^* \to \mathcal{A}^*$$

$$' \in C^*$$

$$\chi_C \colon C^* \to A^* \qquad \forall w \in C^* \qquad \pi(\chi_C(w)) = \pi(w) .$$

Proposition

 χ_C is realised by a letter-to letter sequential right transducer.

The right converter from C^* to A^*

$$\textit{C} = \{-1, 0, 1, 2\}$$
 contains \textit{A}_3 .

$$\chi_C \colon C^* \to A^* \qquad \forall w \in C^* \qquad \pi(\chi_C(w)) = \pi(w) \ .$$

Proposition

 $\chi_{\mathcal{C}}$ is realised by a letter-to letter sequential right transducer.

The left converter from C^* to A^*

The left converter from C^* to A^*

Proposition

If $p \geqslant 2q-1$, then the left converter has only two states.

The left converter from C^* to A^*

Proposition

If $p \geqslant 2q-1$, then the left converter has only two states.

Proposition

Let $z \in [0, \omega_{\frac{3}{2}}]$ and **c** its companion representation.

Then a is a $\frac{3}{2}$ -expansion of z iff (c,a) is an infinite path in the left converter.

Squaring the left converter

Squaring the left converter

Squaring the left converter

Complement 2: Languages with arbitrary rhythm

p, q coprime integers $p > q \geqslant 1$ A ordered alphabet

p, q coprime integers $p > q \geqslant 1$ A ordered alphabet

A purely periodic labelled signature

$$(\mathsf{s}, \lambda) = (\mathsf{r}^\omega, \gamma^\omega)$$

p, q coprime integers $p > q \geqslant 1$ A ordered alphabet

A purely periodic labelled signature

$$(\mathsf{s}, \lambda) = (\mathsf{r}^\omega, \gamma^\omega)$$

r rhythm of dir. par. (q, p) $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_{p-1})$ $\gamma_i \in A$

p, q coprime integers $p > q \geqslant 1$ A ordered alphabet

A purely periodic labelled signature

$$(\mathsf{s}, \lambda) = (\mathsf{r}^\omega, \gamma^\omega)$$

r rhythm of dir. par. (q, p) $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_{p-1})$ $\gamma_i \in A$

Definition

$$\mathbf{r} = (r_0, r_1, \dots, r_{a-1})$$

$$\gamma = u_0 u_1 \cdots u_{q-1}$$
 factorisation induced by **r**

$$|u_i|=r_i$$

 γ consistent with r

every u_i increasing word

p, q coprime integers $p > q \geqslant 1$ A ordered alphabet

A purely periodic labelled signature

$$(\mathsf{s}, \lambda) = (\mathsf{r}^\omega, \gamma^\omega)$$

r rhythm of dir. par. (q,p) $\gamma=(\gamma_0,\gamma_1,\ldots,\gamma_{p-1})$ $\gamma_i\in A$

Definition

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$

 $\gamma = u_0 \, u_1 \cdots u_{q-1}$ factorisation induced by ${f r}$ $|u_i| = r_i$

 γ consistent with \mathbf{r} every u_i increasing word

Examples

$${f r}=(3,1,1)$$
 $\gamma=01210$ $\gamma=03564$ consistent ${f r}=(2,2,1)$ $\gamma=01210$ not consistent $\gamma=03564$ consistent

p, q coprime integers $p > q \ge 1$ alphabet: $\{0, 1, \dots, p-1\}$

 $p, q \text{ coprime integers } p > q \geqslant 1$ alphabet: $\{0, 1, \dots, p-1\}$

Definition

$$\gamma_{\frac{p}{a}} = (0, (q \% p), (2 q \% p), \dots, ((p-1) q \% p)).$$

$$p, q \text{ coprime integers } p > q \geqslant 1$$
 alphabet: $\{0, 1, \dots, p-1\}$

Definition

$$\gamma_{\frac{p}{q}} = (0, (q\%p), (2q\%p), \dots, ((p-1)q\%p)).$$

Examples

$$\mathbf{r}_{\frac{3}{2}} = (2,1)$$
 $\gamma_{\frac{3}{2}} = 021$ $\mathbf{r}_{\frac{5}{3}} = (2,2,1)$ $\gamma_{\frac{5}{3}} = 03142$

$$p, q$$
 coprime integers $p > q \geqslant 1$ alphabet: $\{0, 1, \dots, p-1\}$

Definition

$$\gamma_{\frac{p}{q}} = (0, (q\%p), (2q\%p), \dots, ((p-1)q\%p)).$$

Examples

$$\mathbf{r}_{\frac{3}{2}} = (2,1)$$
 $\gamma_{\frac{3}{2}} = 021$ $\mathbf{r}_{\frac{5}{3}} = (2,2,1)$ $\gamma_{\frac{5}{3}} = 03142$

Proposition

$$\gamma_{\frac{p}{q}}$$
 is consistent with $\mathbf{r}_{\frac{p}{q}}$

Signature of
$$T_{\frac{p}{q}}$$

p, q coprime integers, $p > q \geqslant 1$

Theorem

The labelled signature of $T_{\frac{p}{a}}$ is purely periodic of period $(\mathbf{r}_{\frac{p}{a}},\gamma_{\frac{p}{a}})$.

p, q coprime integers $p > q \geqslant 1$

p, q coprime integers $p > q \geqslant 1$

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$
 rhythm of directing parameter (q, p)

p, q coprime integers $p > q \geqslant 1$

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$
 rhythm of directing parameter (q, p)

Definition

$$\gamma_{\mathbf{r}} = (\gamma_0, \gamma_1, \dots, \gamma_{p-1}) = u_0 u_1 \cdots u_{q-1}$$
special labelling associated with \mathbf{r}

$$\gamma_i \in u_k$$
, $\gamma_{i+1} \in u_{k+j}$ \Longrightarrow $\gamma_{i+1} = \gamma_i + q - j p$

p, q coprime integers $p > q \geqslant 1$

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$
 rhythm of directing parameter (q, p)

Definition

$$\gamma_{\mathbf{r}} = (\gamma_0, \gamma_1, \dots, \gamma_{p-1}) = u_0 u_1 \cdots u_{q-1}$$
special labelling associated with \mathbf{r}
 $\gamma_i \in u_k$, $\gamma_{i+1} \in u_{k+i} \implies \gamma_{i+1} = \gamma_i + q - j p$

Examples

$$\mathbf{r} = (3, 1, 1)$$
 $\gamma_{\mathbf{r}} = 03642$ $\mathbf{r} = (4, 0, 1)$ $\gamma_{\mathbf{r}} = 03692$ $\mathbf{r} = (2, 2, 1)$ $\gamma_{\mathbf{r}} = 03142$

$$p, q$$
 coprime integers $p > q \geqslant 1$

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$
 rhythm of directing parameter (q, p)

Definition

$$\gamma_{\mathbf{r}} = (\gamma_0, \gamma_1, \dots, \gamma_{p-1}) = u_0 \, u_1 \cdots u_{q-1}$$
 special labelling associated with \mathbf{r}

$$\gamma_i \in u_k, \ \gamma_{i+1} \in u_{k+j} \Longrightarrow \gamma_{i+1} = \gamma_i + q - j p$$

Examples

$${f r}=(3,1,1)$$
 ${m \gamma_r}=03642$ ${f r}=(4,0,1)$ ${m \gamma_r}=03692$ ${f r}=(2,2,1)$ ${m \gamma_r}=03142$

Observation

The special labelling associated with r is consistent with r

p, q coprime integers $p > q \geqslant 1$

$$\mathbf{r} = (r_0, r_1, \dots, r_{q-1})$$
 rhythm of directing parameter (q, p)

Definition

$$\gamma_{\mathbf{r}} = (\gamma_0, \gamma_1, \dots, \gamma_{p-1}) = u_0 \, u_1 \cdots u_{q-1}$$
 special labelling associated with \mathbf{r} $\gamma_i \in u_k$, $\gamma_{i+1} \in u_{k+i}$ \Longrightarrow $\gamma_{i+1} = \gamma_i + q - j \, p$

Examples

$${f r}=(3,1,1)$$
 ${m \gamma_r}=03642$ ${f r}=(4,0,1)$ ${m \gamma_r}=03692$ ${f r}=(2,2,1)$ ${m \gamma_r}=03142$

Proposition

$$\gamma_{\mathsf{r}_{rac{p}{q}}}=\gamma_{rac{p}{q}}$$

The tree T_r

p, q coprime integers $p > q \geqslant 1$

r rhythm of directing parameter (q,p) $\gamma_{
m r}$ special labelling

Definition

 $T_{\mathbf{r}}$ labelled tree with labelled signature $(\mathbf{r}^{\omega},\gamma_{\mathbf{r}}^{\omega})$

The tree T_r

p, q coprime integers $p > q \geqslant 1$

r rhythm of directing parameter (q,p) $\gamma_{
m r}$ special labelling

Definition

 $T_{\mathbf{r}}$ labelled tree with labelled signature $(\mathbf{r}^{\omega}, \gamma_{\mathbf{r}}^{\omega})$

Theorem

 $T_{\rm r}$ is the representation of integers in base $\frac{p}{q}$ with non-canonical set of digits.

The tree T_r

p, q coprime integers $p > q \geqslant 1$

r rhythm of directing parameter (q,p) $\gamma_{
m r}$ special labelling

Definition

 $T_{
m r}$ labelled tree with labelled signature $({
m r}^\omega, \gamma_{
m r}^\omega)$

Theorem

 T_r is the representation of integers in base $\frac{p}{q}$ with non-canonical set of digits.

Corollary

 $T_{\frac{p}{q}}$ is the image of T_r by a finite letter-to-letter sequential right transducer.

The tree T_r

p, q coprime integers $p > q \geqslant 1$

r rhythm of directing parameter (q,p) $\gamma_{
m r}$ special labelling

Definition

 $T_{
m r}$ labelled tree with labelled signature $({
m r}^\omega,\gamma_{
m r}^\omega)$ $L_{
m r}$ branch language of $T_{
m r}$

Theorem

 $L_{\rm r}$ is the representation of integers in base ${p\over q}$ with non-canonical set of digits.

Corollary

 $L_{\frac{p}{q}}$ is the image of L_r by a finite letter-to-letter sequential right transducer.

Complement 3:

Signature of rational languages

 $\sigma \colon A^* \to A^* \; \mathsf{morphism}$

$$\sigma \colon A^* \to A^* \; \mathsf{morphism}$$

$$\sigma(a) = ab$$
 $\sigma(b) = a$

$$\sigma \colon A^* \to A^* \text{ morphism}$$

$$\sigma(a) = ab$$
 $\sigma(b) = a$

$$\sigma^1(a) = a b$$

$$\sigma \colon A^* \to A^* \text{ morphism}$$

$$\sigma(a) = ab$$
 $\sigma(b) = a$

$$\sigma^2(a) = a b a$$

$$\sigma \colon A^* \to A^*$$
 morphism

$$\sigma(a) = ab$$
 $\sigma(b) = a$

$$\sigma^3(a) = a b a a b$$

$$\sigma \colon A^* \to A^* \; \mathsf{morphism}$$

$$\sigma(a) = ab$$
 $\sigma(b) = a$

$$\sigma^4(a) = a b a a b a b a$$

$$\sigma \colon A^* \to A^*$$
 morphism

$$\sigma(a) = ab$$
 $\sigma(b) = a$

$$\sigma^5(a) = a b a a b a b a a b a a b$$

$$\sigma \colon A^* \to A^*$$
 morphism

$$\sigma(a) = ab$$
 $\sigma(b) = a$

$$\sigma^6(a) = a b a a b a b a a b a a b a b a a b a b a$$

$$\sigma: A^* \to A^*$$
 morphism

$$\sigma(a) = ab$$
 $\sigma(b) = a$

$$\sigma^{\omega}(a) = a b a a b a b a a b a a b a b a a b a \cdots$$

$$\sigma\colon A^*\to A^* \ \ \text{morphism}$$
 $f_\sigma\colon A^*\to D^* \ \ \text{morphism}$

$$\sigma(a) = ab$$
 $\sigma(b) = a$ $f_{\sigma}(a) = |\sigma(a)| = 2$ $f_{\sigma}(b) = |\sigma(b)| = 1$

$$\sigma^{\omega}(a) = a \ b \ a \ a \ b \ a \ b \ a \ a \ b \ a$$

 $\sigma: A^* \to A^*$ morphism

 $f_{\sigma}: A^* \to D^*$ morphism $g: A^* \to B^*$ morphism

$$\sigma(a)=a\,b$$
 $\sigma(b)=a$ $f_{\sigma}(a)=|\sigma(a)|=2$ $f_{\sigma}(b)=|\sigma(b)|=1$ $g(a)=01$ $g(b)=0$

$$\sigma^{\omega}(a) = a \ b \ a \ a \ b \ a \ b \ a \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \cdots$$
 $f_{\sigma}(\sigma^{\omega}(a)) = 2 \ 1 \ 2 \ 2 \ 1$

$$s = 2 \ 1 \ 2 \ 2 \ 1 \ 2 \ 1 \ 2 \ 2 \ 1 \ 2 \ 1 \ \cdots$$

$$T = \{0,1\}^* \setminus \{0,1\}^* 11\{0,1\}^*$$

Theorem (Cobham 72, Rigo-Maes 02, M.-S. 14)

A prefix-closed language is regular iff its labelled signature is s-morphic.