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Part I

A problem by Mahler



The fractional part of the powers of rational numbers

Notation
0 eR {0} fractional part of 0

Theorem (Folk & Lore)

V0 € Q, the sequence M(6) = {n@} is finite.
V0 e R\ Q, the sequence M(0) is uniformly distributed.

Problem

heR, 6>1 Distribution of S(0) = ({0"}),. ?

Theorem (calculus classic)
For almost all 6, S(6) is uniformly distributed.



The fractional part of the powers of rational numbers

Very few results are known for specific values of 0.

Proposition
0 Pisot = 0 is the only limit point of S(0) (in R/Z ).

Experimental results show that S(#) looks :
e uniformly distributed for transcendental 6,
e very chaotic for rational 0.

Theorem (Pisot ?? — Vijayaraghavan 40)
0 rational = S(0) has infinitely many limit points.



Parametrization of the problem

Fix the rational p > q = 2 coprime integers.

Qs

New problem

EeER Distribution of M (&) = ({f <E>n}> ?
q q neN

Theorem (the same as before)
For almost all £, Mz (&) is uniformly distributed.
q



The (generalized) Mahler approach

Notation
1 C[0,1] I will be a finite union of semi-closed intervals.

Zo(I)={¢eR| Mz(£) iseventually contained in / } .
q q

Two directions of research:
Look for / as large as possible such that Zp (/) is empty.

q
Look for | as small as possible such that Z: (/) is non empty.
q



The (generalized) Mahler approach

Notation
I C[0,1] I will be a finite union of semi-closed intervals.

Zo(I)={¢eR| Mz(£) iseventually contained in / } .
q q

Two directions of research:
Look for /| as large as possible such that Z, (/) is empty.
q

Look for | as small as possible such that Zy (/) is non empty.
q

Theorem (Mahler 68)
Z% ([0.3[) is at most countable.



The (generalized) Mahler approach

Notation
1 C[0,1] I will be a finite union of semi-closed intervals.

Zo(I)={¢eR| Mz(£) iseventually contained in / } .
q q

Two directions of research:
Look for / as large as possible such that Zp (/) is empty.
q

Look for | as small as possible such that Z: (/) is non empty.
q

Theorem (Mahler 68)
Z% ([0.3[) is at most countable.

Open problem Is Z% ([O, %[) non empty?



The (generalized) Mahler approach

Notation
I C[0,1] I will be a finite union of semi-closed intervals.

Zo(I)={¢eR| Mz(£) iseventually contained in / } .
q q

Two directions of research:
Look for /| as large as possible such that Z, (/) is empty.
q

Look for | as small as possible such that Zy (/) is non empty.
q

Theorem (Mahler 68)
Z% ([0.3[) is at most countable.

Conjecture Z; ([0,2[) is empty.

NIw



The search for big / with empty Z ()



The search for big / with empty Zp ()

Theorem (Flatto, Lagarias, Pollington 95)
The set of reals s
such that Zp ([s,s + %[) is empty
q

is dense in [0,1 — %] .

Theorem (Bugeaud 04)
The same set is of Lebesgue measure 1 — % .



The search for big / with empty Z; ()

Theorem (Flatto, Lagarias, Pollington 95)
The set of reals s
such that Zp ([s,s + %[) is empty
q

is dense in [0,1 — %] .

Theorem (Bugeaud 04)

The same set is of Lebesgue measure 1 — % .

Conjecture The same set is [1 — %] .



The search for small |/ with non empty Z ()



The search for small |/ with non empty Z ()

Theorem (Pollington 81)

4 6lp) -
Z% (s &[) is non empty.



The search for small |/ with non empty Z; ()

Theorem (Pollington 81)

4 6lp) -
Z% (s &[) is non empty.

Theorem (A.-F.-S. 05)
Let p>2g—1. Thereexists Yo C[0,1] of measure %
q

such that Zp (Yg) is (countably) infinite.
q q



The search for small |/ with non empty Z; ()

Theorem (Pollington 81)

4 6lp) -
Z% (s &[) is non empty.

Theorem (A.-F.-S. 05)
Let p>2g—1. Thereexists Yo C[0,1] of measure %
q

such that Zp (Yg) is (countably) infinite.
q q

Indeed Y4 <Y3> ={{ eRy | ¢ has two g—expansions } .
q

Qo



The search for small / with non empty Z. ()
Theorem (Pollington 81)

4 6lp\
Z% (s &[) is non empty.

Theorem (A.-F.-S. 05)
Let p>2g—1. Thereexists Yo C[0,1] of measure %
q

such that Zp (YE) is (countably) infinite.
q q

Indeed Zy <YB> ={{ eRy | ¢ has two g—expansions } .
q q

What this means is what this talk is about.



Part 11

Integer and Pisot base numeration systems



Numbers do exist
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Numbers do exist

But you have to write them in order to compute with them



Base 3 numeration system

NeN

Representation of N in base 3: word in Az ={0,1,2}*



Base 3 numeration system

NeN

Representation of N in base 3: word in Az ={0,1,2}*

k
<N>3:akak_1...alao N:Za;3i
0



Base 3 numeration system

N eN
Representation of N in base 3: word in Az ={0,1,2}*
k .
<N>3:akak_1...alao N:Za,-3’
0

Ly = {(N)s| N € N} = A5\ 043



Base 3 numeration system

10
11
12
20
21
22
100
101
102
110

Ly ={(N)3| N € N} = A3\ 0A3

O~NO Ok~ wWwND RO
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111
112
120
121
122
200
201
202
210
211
212
220
221

13
14
15
16
17
18
19
20
21
22
23
24
25






Base 3 numeration system

0000
0001
0002
0010
0011
0012
0020
0021
0022
0100
0101
0102
0110

O~NO Ok~ WwWwDN RO

O

10
11
12

0111
0112
0120
0121
0122
0200
0201
0202
0210
0211
0212
0220
0221

Ly ={(N)s| N € N} = A3

13
14
15
16
17
18
19
20
21
22
23
24
25









Computation of representations in base 3: the integers

v={y=@) ( €N} togetherwith  As = {0,1,2)

Greedy algorithm N e N Jk 3> N >3k
Ny =N
Ni_1 = Ny — ai 3k ax € A, 3k > Ny

Ni—o = Ng_1 — a1 3* a1€A, 31> N

k
N:Za,-?)i <N>3:akak_1...alao
0



Computation of representations in base 3: the integers

v={y=@) ( €N} togetherwith  As = {0,1,2)

Division algorithm N eN
Ny =N
N6:3N1—|-ao ag €A
N1:3N§—|—31 ai €A

k
N:Za,-S" <N>3:akak_1...alao
0



Computation of representations in base 3: the integers

v={y=@) ( €N} togetherwith  As = {0,1,2)

Division algorithm 17e N
N = 17
17=Ny=3-5+2 ag=2cA
5=N;=3-1+2 ag=2¢cA
1=N,=3.0+1 a=1cA

17 =((1)-3+2) 342 (17)3 = 122



Computation of representations in base 3: the reals

V= {v,- — (3) ( e Z} together with  A; = {0,1,2}



Computation of representations in base 3: the reals

V= {v,- — (3)’ ( e Z} together with  A; = {0,1,2}

Greedy algorithm xeR Jk 3hFL S x> 3k
Xk = X
_ k k
Xk_1 = Xk — ak3 ax €A, 3% > xk_1
k—1 k—1
Xk—2 = Xk—1 — ak-13 ak-1 €A, 3T > X0

k
x:Za;3’ (x)3 = akak_1...a130-a-1a-2...
—00



Computation of representations in base 3: the reals

V= {v,- — (3)’ ( ie Z} together with  A; = {0,1,2}
Greedy algorithm x €[0,1]

X1 =X aj = L3X,'J Xi+1 = {3X,'}

[o¢]
x:Za,-37' (xX)3=.a1axa3...
1



= 16/27=.121

025 1/4=.020202. ..




Integer base numeration systems and finite automata

Blaise Pascal in De numeris multiplicibus ~ ~1650

The p-representations of the integers divisible by k
is recognised by a finite automaton.



Integer base numeration systems and finite automata

Blaise Pascal in De numeris multiplicibus ~ ~1650

The p-representations of the integers divisible by k
is recognised by a finite automaton.




Normalisation in an integer base numeration system

Addition in base 3

21110
201 21
112001



Normalisation in an integer base numeration system

Addition in base 3

21110 21110
201 21 201 21
112001 4 1 2 3 1



Normalisation in an integer base numeration system

Addition in base 3 is a normalisation

21110 21110
201 21 201 21
112001 4 1 2 3 1

v:{0,1,2,3,4} — {0,1,2}*



Normalisation in an integer base numeration system

Addition in base 3 is a normalisation

21 110 21 110
2 01 21 2 01 21
1 1 2 001 4 1 2 31
210, 3|1, 4|2 0[0,1]1,2|2
3]0, 4|1

v:{0,1,2,3,4} — {0,1,2}*

[1
0[1,1]2



Normalisation in an integer base numeration system

Addition in base 3 is a normalisation

21 110 21 110
2 01 21 2 01 21
1 1 2 001 4 1 2 31
210, 3|1, 4|2 0[0,1]1,2|2
3]0, 4|1
v:{0,1,2,3,4}* — {0,1,2}*
1 0[1,1]2

ccd vt el vt ne
11 2 "o o 1



Normalisation in an integer base numeration system

Proposition (Folk & Lore)
In any integer base,
normalisation from any alphabet of digits is realised
by a letter-to-letter sequential right transducer.
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Normalisation in an integer base numeration system

Proposition (Folk & Lore)

In any integer base,
normalisation from any alphabet of digits is realised
by a letter-to-letter sequential right transducer.

v:{1,0,1,2,3,4}* — {0,1,2}*

210, 3]1, 4]2 0/0, 11,22 1|1,0/2
310,41 10, 2|1, 3|2

1]0,0(1,1|2
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Normalisation in an integer base numeration system

Proposition (Folk & Lore)
In any integer base,
normalisation from any alphabet of digits is realised
by a letter-to-letter sequential right transducer.

v:{1,0,1,2,3,4}* — {0,1,2}*




Normalisation in an integer base numeration system

Proposition (Folk & Lore)

In any integer base,
normalisation from any alphabet of digits is realised
by a letter-to-letter sequential right transducer.

v:{1,0,1,2,3,4}* — {0,1,2}*

2(0, 3|1, 4|2 0[0, 1[1, 22 1|1,0/2
310,41 10, 2|1, 3|2

1]0,0(1,1|2



The base 5 numeration system

3 an integer >1

V = {v,- =(3) ‘ i€ Z} together with A3 = {0, 1,2}



The base 5 numeration system

B any real number >1

V:{v,-:(ﬁ)i

i € Z} together with Az = {0,1,...,[5] —1}



The base 5 numeration system

B any real number > 1

v={v=

i Z} together with Az = {0,1,...,[5] —1}

Greedy algorithm (Rényi 57)
x €[0,1]

X] = X aj = | fxi] xiv1 = {Bxi}

X:ZQ;/))ii <X>6:.313233...



The base 5 numeration system

B any real number > 1

V:{v,-:(ﬁ)i

i € Z} together with Az = {0,1,...,[5] —1}

Theorem (Parry 60)
B Pisot — L5:{<x>5\XER}ERatA§



The base 5 numeration system

B any real number >1

V:{v,-:(ﬁ)i

i € Z} together with Az = {0,1,...,[5] —1}

Theorem (Parry 60)
B Pisot — L5:{<X>B\XER}ER3‘5A§

Theorem (Berend-Frougny 96)

B is Pisot iff in base [,
normalisation from any alphabet of digits
is realised by a letter-to-letter (finite) transducer.



Part 111

Representation of integers in a rational base



The base > numeration system — the 5 numeration approach

% a real number >1

V= {v,- = (g)" ‘ i€ Z} together with A; = {0, ..., (3] —1}={0,1}



The base > numeration system — the 5 numeration approach

% a real number >1 not a Pisot number

V= {v,- = (g)" ‘ i€ Z} together with A; = {0, ..., (3] —1}={0,1}



The base > numeration system — the 5 numeration approach

% a real number >1 not a Pisot number

V= {v,- = (g)" ‘ i€ Z} together with A; = {0, ..., (3] —1}={0,1}

3\ kt1 3\ k
Greedy algorithm xeR dk <§> > x> <§>
Xk = X
3\ * 3\
Xk—1 = Xk — ak <§> ax €A, <§> > X1
k 3 i
x:Za,- <§) (X)w = akak—1...3130-a—14_2...

(2)y =10.010000010 ...



The base % numeration system — the Euclidean approach

% a real number >1
U= {u,- = % (%)' ‘ i € N} together with A3 = {0,1,2}



The base % numeration system — the Euclidean approach

% a real number >1
U= {u,- = % (%)' ‘ i € N} together with A3 = {0,1,2}

Modified division algorithm NeN

No=N
2Ny =3N; + ag ap €A
2Ny =3Ny 4+ a1 a1 €A

B

djdk—1-.--4140

NIw

r\.)ll—l

-y



The base % numeration system — the Euclidean approach

% a real number >1

U={u=3(3)"|ieN} togetherwith As={0,1,2}

Modified division algorithm 5eN

No =5
2Np=2-5=3-3+1 1eA
2N =2-3=3-2+0 0cA
2Ny =2-2=3-1+1 1eA
2N3 =2-1=3-0+2 2€ A

=2101

5:%[(((2)%+1>%+0>%+1] (5)

Nw



The base % numeration system — the Euclidean approach

U={u=30)

i€ N} together with A3 = {0,1,2}



The base % numeration system — the Euclidean approach

U={u=30)

i€ N} together with A3 = {0,1,2}

Theorem
Every N in N has an integer representation in the %—system.

It is the unique finite %—representation of N .



The base % numeration system — the Euclidean approach

U= {u,- =1 (%)' i€ N} together with A3 = {0,1,2}

Theorem
Every N in N has an integer representation in the %—system.

It is the unique finite %—representation of N .

We call this representation the %—expansion of N

and we denote it by (N)

NIw



The base % numeration system — the Euclidean approach

i€ N} together with A3 = {0,1,2}

U={u=30)

Theorem
Every N in N has an integer representation in the %—system.

It is the unique finite %—representation of N .

We call this representation the %—expansion of N

and we denote it by (N)

NIw
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21

210
212
2101
2120
2122
21011
21200
21202
21221
210110
210112
212001
212020
212022
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212211
2101100
2101102
2101121
2120010
2120012
2120201
2120220
2120222
2122111

21011000
21011002
21011021
21011210
21011212
21200101
21200120

17
18
19
20
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22
23
24
25
26
27
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30
31
32
33






The tree T% of the %-expansions

L3 prefix-closed — L% spans the edges

3
2

of a subtree T% of the full 3-ary tree.

The nodes of T% are labeled by the integers.

The label of a node is the integer represented
by the label of the path from the root to that node.

These labels give the radix order in Ls .
2



The tree T% of the %-expansions

L3 prefix-closed — L% spans the edges

3
2

of a subtree T% of the full 3-ary tree.

The nodes of T% are labeled by the integers.

The label of a node is the integer represented
by the label of the path from the root to that node.

These labels give the radix order in Ls .
2

Any two distinct subtrees of T3 are not isomorphic.
2



The FLIP property

LC A"



The FLIP property

LC A"

Definition
L has the Finite Left Iteration Property (FLIP) if

Vu,v e A* {ieN| uv' € Pre(L)} is finite.
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The FLIP property

LC A"

Definition
L has the Finite Left Iteration Property (FLIP) if

Vu,v e A* {ieN| uv' € Pre(L)} is finite.
(Equivalently, if Pre(L) meets the /RS condition.)

Proposition
Lr is a FLIP language.



The FLIP property

LC A"

Definition
L has the Finite Left Iteration Property (FLIP) if

Yu,v € A" {ieN| uv' € Pre(L)} is finite.
(Equivalently, if Pre(L) meets the /RS condition.)
Proposition

Lr is a FLIP language.

Corollary
Lo is not a regular language, not a context-free language,
q
not known to belong to any subclass of context-sensitive languages.






Digit conversion

D finite digit alphabet, that contains A .

xp: D* — A* Vw € D* m(xp(w)) = m(w) .

Proposition
For every D, xp is realised
by a letter-to letter sequential right transducer.



Digit conversion

D finite digit alphabet, that contains A .

xp: D* — A* Vw € D* m(xp(w)) = m(w) .

Proposition
For every D, xp Is realised
by a letter-to letter sequential right transducer.

210, 3|1, 42 110, 2[1, 3|2 0[0,1]1,2|2

0[1,1]2 0[2

1 4]0 1 310, 41 1
121 12



Part IV

Representation of reals in a rational base



Representation of reals in base 3: the tree T;

- 16/27=.121

25 1/4=.020202. ..




Representation of reals in base 3: the tree T;

AY' = labels of the infinite pathsin T} a={a}i>1 € A}

Definition
a is an expansion in base 3 of the real x € [0,1] defined by:

x=n(a)=Y a (%)

i=1



Representation of reals in base 3: the tree T;

AY' = labels of the infinite pathsin T} a={a}i>1 € A}

Definition
a is an expansion in base 3 of the real x € [0,1] defined by:

x=m(a)=) a (%)

i=1

Every real in [0,1] has (at least) one expansion in base 3.



Representation of reals in base 3: the tree T;

AY' = labels of the infinite pathsin T} a={a}i>1 € A}

Definition
a is an expansion in base 3 of the real x € [0,1] defined by:

x=m(a)=) a (%)

i=1

Every real in [0,1] has (at least) one expansion in base 3.

Every real in [0,1] has at most two expansions in base 3.



Representation of reals in base 3: the tree T;

AY' = labels of the infinite pathsin T} a={a}i>1 € A}

Definition
a is an expansion in base 3 of the real x € [0,1] defined by:

x=m(a)=) a (%)

i>1
Every real in [0,1] has (at least) one expansion in base 3.

Every real in [0,1] has at most two expansions in base 3.

The set of reals in [0,1] which have two expansions
is infinite countable.



Nl

Representation of reals in base

: the tree T}
2




Nl

Representation of reals in base

: the tree T}
2




Representation of reals in base % : the tree T}
2
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w

Representation of reals in base 5 : the tree T}
2

W; = labels of the infinite pathsin T a=1{a}i>1 €A}
2
Definition
a is an expansion in base % (of areal x ) iff ac W% :

Such an a is a % -expansion of the real x defined by:

x=n(a) =Y a (%)



Representation of reals in base

Nl

: the tree T}
2

Ws = labels of the infinite paths in T, a={aj}i>1 € Ag\I
2 3
Definition
a is an expansion in base % (of areal x) iff ae W5 .
2
3

Such an a is a > -expansion of the real x defined by:

x:ﬂ'(.a)zzai% (g)

i=1

W3 contains a maximal word. t3
2 2

% 212211122121122121211221 -
(w;) = 1.622270502884767315956950982 -



w

Representation of reals in base 5 : the tree T}
2

W; = labels of the infinite pathsin T a=1{a}i>1 €A}
2
Definition
a is an expansion in base % (of areal x ) iff ac W% :

Such an a is a % -expansion of the real x defined by:

x=n(a) =Y a (%)



Representation of reals in base % : the tree T}
2
W% = labels of the infinite paths in T} a=1{a}i>1 €A}
2
Definition
a is an expansion in base % (of areal x ) iff ac W% :

Such an a is a % -expansion of the real x defined by:

x=n(a) =Y a (%)

Theorem (A.-F.-S. 05)

Every real of [0,ws]| has (at least) one % -expansion.
2



Representation of reals in base % : the tree T}
2

2
e T o
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Multiples %-expansions

The set of reals of [0,w3] that have more than one %—expansion
2

is infinite countable.



Multiples %-expansions

The set of reals of [0,w3] that have more than one %—expansion
2

is infinite countable.

No element of W5 , but 0%, is eventually periodic.
2



Multiples %-expansions

The set of reals of [0,w3] that have more than one %—expansion
2

is infinite countable.
No element of W5 , but 0%, is eventually periodic.
2

The finite prefixes of a %-expansion, completed with Q’s,
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Multiples %-expansions

The set of reals of [0,w3] that have more than one %—expansion
2

is infinite countable.
No element of W5 , but 0%, is eventually periodic.
2

The finite prefixes of a %-expansion, completed with Q’s,

are not %-expansions.

Every real in [0,w3] has at most two %—expansions.
2

The set of reals in [0,w3] which have two expansions
2

is infinite countable.



Part V

When order generates disorder






Meta theorem

The T» are characterised by their periodic signature.
q



Signature of a tree

Definition
Signature of an ordered tree 7 =
sequence of the degrees of the nodes
in the breadth-first traversal of T



7
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Signature of a tree

Signature = sequence of the degrees
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Signature of a tree

Signature = sequence of the degrees

O——®—
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Signature of a tree

Signature = sequence of the degrees
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Signature of a tree

Signature = sequence of the degrees

O——®—

s=212



Signature of a tree

Signature = sequence of the degrees
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Signature of a tree

Signature = sequence of the degrees

®—

s=21212



Signature of a tree

Signature = sequence of the degrees

O——®—

s=212121



Signature of a tree

Signature = sequence of the degrees

W—O—®
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Signature of a tree

Signature = sequence of the degrees

@--*

<

®

O -0—-€ —0—3
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Signature of a tree

Signature = sequence of the degrees

O——®—
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Signature of a tree

Signature = sequence of the degrees
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Signature of a tree

Signature = sequence of the degrees
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@
(6)
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s=1212121212121212121 ---
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Tree from a signature

Signature = sequence of the degrees
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Signature = sequence of the degrees
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Signature = sequence of the degrees
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Tree from a signature

Signature = sequence of the degrees
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Tree from a signature

Signature = sequence of the degrees

O—

o
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Tree from a signature

Signature = sequence of the degrees

s=1212121212121212121 ---



Tree from a signature

Signature = sequence of the degrees

s=1212121212121212121 ---



Tree from a signature

Signature = sequence of the degrees

@—»

@
(6)
@ %

%—@

s=1212121212121212121 ---



Labelled signature of a labelled tree

Arcs of T labelled in an ordered alphabet A

Definition
Labelled signature of an ordered tree 7 =
signature of 7 +
sequence of the labels of the arcs
in the breadth-first traversal of 7

labelled signature (s, A)



Labelled signature of a labelled tree

D@ @@
FoSa
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Labelled signature of a labelled tree

D@ -@ @
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Labelled signature of a labelled tree

D@ @@
FoSa
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S e,
@52@'1*@( @ -@ilg

0
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Labelled signature of a labelled tree
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Labelled signature of a labelled tree
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Labelled signature of a labelled tree

0
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Labelled signature of a labelled tree

D@ @@
FoSa
0 /:3 ‘

S e,
@52*@1*@( @ -@ilg

N
&-1-O& 0\@2”

s=212121
A=021021021

...... »



Labelled signature of a labelled tree
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Q-0 O -@iE
0
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$s=212121212121212121-
A=021021021021021021021021021 --



Labelled tree from a labelled signature
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Labelled tree from a labelled signature
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Labelled tree from a labelled signature
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Labelled tree from a labelled signature
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Labelled tree from a labelled signature

/
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Labelled tree from a labelled signature

o
2/ \O\
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@8)20 1 @(0\
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$s=1212121212121212121-
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Labelled tree from a labelled signature

2/
4 @XO\
%o,
O @01+

$s=212121212121212121-
A=021021021021021021021021021 --



Labelled tree from a labelled signature

o
2—»@1—»@(2/ O\@::z-:
B[O,
@@

$s=212121212121212121-
A=021021021021021021021021021 --



Labelled tree from a labelled signature

/@—1—»@—1»@—1::::1:
o ®

0 /:gl 0‘ ...... :

2 \@i2 \@_1_>® ...... .

-0 o@D

0
0 \ /,@—1—»:::1:::
& -0 -0 _ . ® -
®:0‘ :IIZ:::

$s=212121212121212121-
A=021021021021021021021021021 --



Signature of T:

p, g coprime integers p>q>1



Signature of T:

p, q coprime integers p>q>1

Theorem
The (labelled) signature of Te is purely periodic.
q



Rhythm

p, g coprime integers p>q>1

A purely periodic signature



Rhythm

p, q coprime integers p>qg>1

A purely periodic signature

Definition
r rhythm of directing parameter (q, p)

r = (ro,rl,...,rq_l) Zl‘,’



Rhythm

p, q coprime integers p>qg>1
A purely periodic signature

Definition

r rhythm of directing parameter (q, p)

r = (ro,rl,...,rq_l) Zl‘,’ =

Example

Rhythms of dir. par. (3,5): (3,1,1) (2,2,1) (1,2,2)



Rhythm

p, q coprime integers p>qg>1
Geometric representation
r= (ro,rl,. . .,rq_l)

path(r) = yxy"xy? .. xyix



Rhythm

p, q coprime integers p>qg>1
Geometric representation
r= (ro,rl,. . .,rq_l)

path(r) = yxy"xy? .. xyix




Rhythm

p, q coprime integers p>qg>1

Geometric representation

r= (ro,rl,...,rq_l)

path(r) = yxy"xy? .. xyix




Christoffel rhythm r:
q
p, q coprime integers p>qg>1

r Christoffel rhythm if  path(r) Christoffel word



Christoffel rhythm r:
q
p, q coprime integers p>qg>1

r Christoffel rhythm if  path(r) Christoffel word
path(r) Christoffel word if  no integer point between path(r) and slope



Christoffel rhythm r:
q
p, q coprime integers p>qg>1

r Christoffel rhythm if  path(r) Christoffel word
path(r) Christoffel word if  no integer point between path(r) and slope




Signature of T:

p, g coprime integers, p>q>1

Theorem
The signature of Tr is purely periodic of period rp .
q q



Christoffel labelling

p, g coprime integers p>gq > 1 alphabet: {0,1,...,p—1}



Christoffel labelling

p, g coprime integers p>gq > 1 alphabet: {0,1,...,p—1}

Definition

ve = (0, (q%p). 2q%p),.... ((P—1)q%p)) -



Christoffel labelling
p, g coprime integers p >qg>1 alphabet: {0,1,...,p—1}

Definition

Yo = (0, (qup), (2q%p),..., ((P—1)g% )) )

Examples
rs=(21) 7;=021 rs=(2,2,1) s =03142

2 3



Christoffel labelling

p, g coprime integers p>gq > 1 alphabet: {0,1,...,p—1}

Definition

Yo = (0, (qup), (2q%p),..., ((P—1)g% )) )

Examples
rs=(2,1) 73 =021 rs=(2,2,1) s =03142

2 3

Proposition

~e is consistent with rp
q q



Signature of T:

p, g coprime integers, p>q>1

Theorem
The labelled signature of Tr is purely periodic of period (re,~ye) .
q q q



Part VI

A property still missing a proper name



Minimal words in T3
2
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Minimal words in T3
2

1

2@ -
1. DL 2 0 ®::
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2 BB
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Minimal words in T3
2




Minimal words in T3
2




Minimal words in T3
2




Minimal words in T3
2




Minimal words in T3
2




Minimal words in T3
2
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Minimal words in T3
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Minimal words in T3
2




Minimal words in T3
2




Minimal words in T3
2

The w,, are all distinct words of {0,1}“ .



Minimal words in T3
2

Problem
What is the relation between the



Minimal words in T3
2

Problem
What is the relation between the w, 7

Conjecture?

For every n there exists a finite transducer
that takes w, as input and outputs w,, .



Minimal words in T3
2

Problem
What is the relation between the w, 7

Conjecture?

For every n there exists a finite transducer
that takes w, as input and outputs w,, .

Stupid remark
True for n=1,2.



Minimal words in T3
2

Problem
What is the relation between the w, 7

Conjecture?

For every n there exists a finite transducer
that takes w, as input and outputs w,, .

Stupid remark
True for n=1,2.

11 0/0

1/0

0|1



Derived transducer D%




Derived transducer D%

2—-0]1

1-0]0,1]1

0—1]0



0|1

Derived transducer D%

2—0J1

1-0]0,1]1

0—1]0



Derived transducer D%

Theorem




Part VII

Complements



Complement 1:

The companion representation and
the Mahler problem



The companion %-representation

h:R, —7 function defined by:  h(z) =2 L(%)z] _3z
h(z)

2 —0 —o0

1 ]

0 >

1 2 Z

-1 e

Proposition

h is periodic of period 2 and
h(z) e C ={-1,0,1,2} , Vze Ry



The companion %-representation

() =1 (3 2) =

SO(Z):R_i_—)CN SO(Z):C:_C]_Cz...Cn...

Proposition

[

Vze Ry, o(z) is a %—representation of {z}=z—|z]|.

)k_lz} .

Nl

Vk €N, .ckCxr1Cxan--- isa %—representation of {(



The companion %-representation
3 n—1
ho(2) = h ((5)'z) =<,
SO(Z):RJ,_—)CN @(Z):c:_clcz...cn...

Proposition

Vze Ry, o(z) is a %—representation of {z}=z—|z]|.

)k_lz} .

[

Vk €N, .ckCxr1Cxan--- isa %—representation of {(

Nl

Proposition
VkeN, h(z) =0 =

{(
VkeEN, h(z)=1 = {

(

ylzh e ol
ylzh e 3l

Nlw Nw



The right converter from C* to A*

C={-1,0,1,2} contains As .

Xc: C"— A" VYw e C* m(xc(w)) = m(w) .

Proposition

Xc Is realised by a letter-to letter sequential right transducer.



The right converter from C* to A*

C={-1,0,1,2} contains As .

Xc: C"— A" VYw e C* m(xc(w)) = m(w) .

Proposition

Xc Is realised by a letter-to letter sequential right transducer.

0/0,1]1, 2|2 1]0,0]1, 1|2

@
l

20

1|2 l

N



The left converter from C* to A*

0/0,1]1,2|2 1/0,0[1,1[2

2/0



The left converter from C* to A*

0/0,1]1,2|2 1/0,0[1, 1[2

20

Proposition
If p>2q—1, then the left converter has only two states.



The left converter from C* to A*

0/0,1]1,2|2 1/0,0[1, 1]2

20

Proposition
If p>2q—1, then the left converter has only two states.

Proposition
Let z € [0,ws] and c its companion representation.
2

Then a isa %—expansion of z iff
(c,a) is an infinite path in the left converter.



Squaring the left converter
0[0,1]1,2|2 1]0,0(1, 1[2

2/0

0/0,1]1,2[2

1/0,0|1,1|2

0[(1,0), 1](2,1)



Squaring the left converter
0[0,1]1,2|2 1]0,0(1, 1[2

2/0

0/0,1]1,2[2

1/0,0|1,1|2

0((1,0), 1|(2,1)



Squaring the left converter
0[0,1]1,2|2 1]0,0(1, 1[2

2/0

0/0,1]1,2[2

1/0,0|1,1|2

0/(1,0), 1](2,1)



Complement 2:

Languages with arbitrary rhythm



Rhythm and labelling

p, g coprime integers p > q > 1 A ordered alphabet



Rhythm and labelling

p, g coprime integers p > q > 1 A ordered alphabet

A purely periodic labelled signature

(s:A) = (r¥,7")



Rhythm and labelling

p, g coprime integers p > q > 1 A ordered alphabet
A purely periodic labelled signature

(S,)\) = (rw’,yw)
r rhythm of dir. par. (g, p) ~ = (0,71, -- >’Yp—1) vi €A



Rhythm and labelling

p, g coprime integers p > q > 1 A ordered alphabet

A purely periodic labelled signature

(s:A) = (r¥,7")

r rhythm of dir. par. (g, p) ¥ =(10:71,---,7p-1) VEA
Definition

r = (ro,rl,...,rq_l)
Y = ug uy - - - ug—1 factorisation induced by r lui| = r;

~ consistent with r every u; increasing word



Rhythm and labelling

p, g coprime integers p > q > 1 A ordered alphabet

A purely periodic labelled signature

(s:A) = (r¥,7")

r rhythm of dir. par. (q7 p) Y= (707717"'7"}%—1) Vi € A
Definition
r = (ro, r,.. .,Fq_l)
¥ = uguy - - Uug—1 factorisation induced by r lui| = ri
~ consistent with r every u; increasing word
Examples

r=(3,1,1) v=01210 ~ =03564 consistent
r=(2,2,1) +=01210 not consistent v =03564 consistent



Christoffel labelling

p, g coprime integers p>gq > 1 alphabet: {0,1,...,p—1}



Christoffel labelling

p, g coprime integers p>gq > 1 alphabet: {0,1,...,p—1}

Definition

ve = (0, (q%p). 2q%p),.... ((P—1)q%p)) -



Christoffel labelling
p, g coprime integers p >qg>1 alphabet: {0,1,...,p—1}

Definition

Yo = (0, (qup), (2q%p),..., ((P—1)g% )) )

Examples
rs=(21) 7;=021 rs=(2,2,1) s =03142

2 3



Christoffel labelling

p, g coprime integers p>gq > 1 alphabet: {0,1,...,p—1}

Definition

Yo = (0, (qup), (2q%p),..., ((P—1)g% )) )

Examples
rs=(2,1) 73 =021 rs=(2,2,1) s =03142

2 3

Proposition

~e is consistent with rp
q q



Signature of T:

p, g coprime integers, p>q>1

Theorem
The labelled signature of Tr is purely periodic of period (re,~ye) .
q q q



Special labelling

p, g coprime integers p>q>1



Special labelling

p, g coprime integers p>q>1
r=(ro,r,...,rg—1) rhythm of directing parameter (q, p)



Special labelling

p, g coprime integers p>q>1
r=1(r,rn,...,rg—1) rhythm of directing parameter (q, p)

Definition

Y = (’707'717---77p—1) =Uuguy---Ug—1
special labelling associated with r

Vi € Uk, Vit1 € Ukyj = Vi1 =i+ q—jp



Special labelling

p, g coprime integers p>q>1
r=1(r,rn,...,rg—1) rhythm of directing parameter (q, p)

Definition
Ve = (’707'717- . 77p—1) =Uuguy---Ug—1
special labelling associated with r

Vi € Uk, Vit1 € Ukyj = Vi1 =i+ q—jp

Examples
r=(3,1,1) ~, =03642 r=(4,0,1) ~,=03692
r=(2,2,1) ~,=03142



Special labelling

p, g coprime integers p>q>1
r=1(r,rn,...,rg—1) rhythm of directing parameter (q, p)

Definition
Ve = (’707'717- . 77p—1) =Uuguy---Ug—1
special labelling associated with r

Vi € Uk, Vit1 € Ukyj = Vi1 =i+ q—jp

Examples
r=(3,1,1) ~, =03642 r=(4,0,1) ~,=03692
r=(2,2,1) ~,=03142

Observation
The special labelling associated with r is consistent with r



Special labelling

p, q coprime integers p>qg>1
r=1(r,rn,...,rg—1) rhythm of directing parameter (q, p)

Definition

Y = (’707717---77p—1) =Uuguy---Ug—1
special labelling associated with r

Vi € Uk, Vit1 € Ukyj = Vi1 =i+ q—jp

Examples
r=(3,1,1) ~,=03642 r=(4,0,1) ~,=03692
r=(2,2,1) ~, =03142
Proposition
’Yrg - ’75



The tree T,

p, q coprime integers p>q>1
r rhythm of directing parameter (q, p) 7, special labelling

Definition
T, labelled tree with labelled signature (r*,~{)



The tree T,

p, q coprime integers p>q>1
r rhythm of directing parameter (q, p) 7, special labelling

Definition
T, labelled tree with labelled signature (r*,~{)

Theorem
T, is the representation of integers in base g
with non-canonical set of digits.



The tree T,

p, q coprime integers p>q>1
r rhythm of directing parameter (q, p) 7, special labelling

Definition
T, labelled tree with labelled signature (r*,~¥)

Theorem
T, is the representation of integers in base g
with non-canonical set of digits.

Corollary
To is the image of T, by
q
a finite letter-to-letter sequential right transducer.



The tree T,

p, q coprime integers p>q>1
r rhythm of directing parameter (q, p) 7, special labelling

Definition
T, labelled tree with labelled signature (r*,~Y)
L, branch language of T,

Theorem
L, is the representation of integers in base g
with non-canonical set of digits.

Corollary

Lp is the image of L, by

P
q
a finite letter-to-letter sequential right transducer.



Complement 3:

Signature of rational languages



Another example: the s-morphic signatures

o: A" — A" morphism



Another example: the s-morphic signatures

o: A" — A" morphism



Another example: the s-morphic signatures

o: A" — A" morphism



Another example: the s-morphic signatures

o: A" — A" morphism



Another example: the s-morphic signatures

o: A" — A* morphism

o3(a) = abaab



Another example: the s-morphic signatures

o: A" — A* morphism

c*(a) = abaababa



Another example: the s-morphic signatures

o: A" — A* morphism

o°(a) = abaababaabaab



Another example: the s-morphic signatures

o: A" — A* morphism

o%a) = abaababaabaababaababa



Another example: the s-morphic signatures

o: A" — A* morphism

o“a) = abaababaabaababaababa---



Another example: the s-morphic signatures

o: A" — A* morphism
f,: A" — D* morphism

o“a) = abaababaabaababaababa---
fo“(@)=212212122122121221212--



Another example: the s-morphic signatures

o: A" — A" morphism
f,: A" — D* morphism g: A* — B morphism

o(a)=ab o(b)=a
fo(a) = lo(a)l =2 £(b) = |o(b)] =1
g(a)=01 g(b)=0

o“a) = abaababaabaababaababa---
fo“(@)=212212122122121221212--
g(0¥(a))=0100101001001010010100100101001001 --



Another example: the s-morphic signatures

s=212212122122121:-
A=010010100100101001010010 --



Another example: the s-morphic signatures

s=212212122122121:-
A=010010100100101001010010 --



Another example: the s-morphic signatures

@61—»@---0»

0

s=212212122122121:-
A=010010100100101001010010 -



Another example: the s-morphic signatures

1
9 -0--a

0 *%

s=212212122122121:-
A=010010100100101001010010 -~



Another example: the s-morphic signatures

1/
%)1_>®0_>@<0\® 177

.
0y

s=212212122122121:-
A=010010100100101001010010 -



Another example: the s-morphic signatures

o
(%H(D_o{@<0 )
0 \@<1

O

s=212212122122121:-
A=010010100100101001010010 --



Another example: the s-morphic signatures

s=212212122122121:-
A=010010100100101001010010 --



Another example: the s-morphic signatures

T={0,1}*\{0,1}*11{0,1}*



Another example: the s-morphic signatures

Theorem (Cobham 72, Rigo—Maes 02, M.-S. 14)

A prefix-closed language is regular iff
its labelled signature is s-morphic.



