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Adding machine

The Pascaline (1642)

featured the first carry propagation mechanism
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Carry propagation prevents addition to be parallelable
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Theorem (von Neumann et al. 63, Knuth 78, Pippenger 02)

Average carry propagation length for addition of
two uniformly distributed n-digit binary numbers =

log,(n) + O (1)
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Amortized carry propagation (in base 2)

CP, = IimN—)oo% ZIN:_Ol cpy(f) if it exists!
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Amortized carry propagation in base Fibonacci

CPr = limy oo 10 cpr(i) if it exists!
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A quick look at the base % numeration system

Integer representations in base 3: the Euclidean approach

V= {v,-: (3)’ iGN} together with As ={0,1,2}
Division algorithm 17eN
No = 17
17=Nyp=3-5+2 ag=2€A
5=N;=3-1+2 aa=2€cA
1=N,=3-0+1 a=1cA

17=((1)-3+2)-3+2 (17)3 = 122



numeration system
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A quick look at the base

. the Euclidean approach
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Integer representations in base 3

U= {u;:%(%)i ‘ iEN} together with A3z = {0,1,2}
Modified division algorithm NeN
No=N
2Ny = 3Ny + ag ap €A
2Ny =3N, + a1 a €A

k i
1/3
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A quick look at the base 5 numeration system

Integer representations in base %: the Euclidean approach
U= {u,- = % (%)' ‘ i€ N} together with A3z = {0,1,2}

Modified division algorithm 5eN

No = 5
2Ng=2-5=3-3+1 1A
2Ny =2-3=3-2+40 0cA
2Ny =2-2=3.14+1 1cA
2N3=2-1=3-04+2 2¢A

=2101

5:%[(((2)%“)%%)%“] (5)

Nlw
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A quick look at the base % numeration system

Theorem (Akiyama, Frougny, S. 08)
Every N in N has an integer representation in the %—system.

It is the unique finite %—representation of N .

Ly = {(V)

NeN} — 777

Nlw

Some information in works
by Akiyama, Marsault, and S. (13-17)
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Carry propagation for successor function in base 3/2
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Amortized carry propagation in base 3/2

CPs = limy o0y Yoig cP3 (1)

if it exists!
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» A general working hypothesis:
Prefix-closed Extendable Languages

» An essential parameter:
The local growth rate
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Definition (Lecomte & Rigo 2001) 0
e A finite totally ordered alphabet e.g. A={0,1}
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e [ C A* any language over A*
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= Natural integers are given representations {0 d b
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ie. (n)y = (n+ 1)-th word of L in the radix ordering
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All “classical’ numeration systems are ANS
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i.e. to be a PCE language
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» A general working hypothesis: 0
Prefix-Closed Extendable Languages 0

L C A* an ANS
Notation
u.(¢) = card (LN A°)
v (0) = card (LN ASY) = Zf:o ug (i)

VL(K)f].
The formula we want: Z cp () = v (9)
f:VL(Efl)

Fact: ‘All" “classical’ ANS are PCE
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» A general working hypothesis: ©
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» An essential parameter: the local growth rate 0
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What we learn from the primal observation: a new parameter

» A framework: the Abstract Numeration System model

» A general working hypothesis: ©
Prefix-Closed Extendable Languages !
®
» An essential parameter: the local growth rate 0
VL(Z)fl
From Z cp (i) =vi(0)
i:vL(éfl)
vi(0)-1 1
follows Z cp (i) = ZVLU)
i=0 j=0
=
hence, if CP; = limpy_oo N cp (i) exists
=0
1 1 P
th CPp =i 00 ' ist
en L= limy_, 0 ZVL(j) exists



Intermede: a freshperson calculus lemma

Lemma
/-1
(Xe)eeny X0 € Ry VO yy = ZXJ
j=0
TFAE
. X¢
(i) limp o % =
X
(i) limpeo 22 = 5
Ye
Ye Y

Y Yo _
(i) im0 ” —7_1

v>1
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What we learn from the primal observation: a new parameter

» A framework: the Abstract Numeration System model

» A general working hypothesis: ©
Prefix-Closed Extendable Languages !
®

» An essential parameter: the local growth rate 0

Proposition

N—1
. 1 . .
If CPL=limyooo N EO cp (i) exists,
=

u(¢+1)
u(f)

then the local growth rate  limy_, =7 exists
YL

and CP; =
-1
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A natural question

Proposition
=
If  CPL=limy_oo N cp (i) exists,
i=0
1
then the local growth rate  limy_ M =
u.(€)

and CP, = n
-1

exists



A natural question

Proposition

=
-

1

— cpy (7 exists,
N : PL( )

If CPL = |im/\/%oo

Il
o

u(¢+1)

then the local growth rate  limy_ =y
u(¢)

and CP; = o
v —1

Question
Is the existence of the local growth rate sufficient

exists

to insure the existence of the carry propagation?
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An unbalanced tree
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An unbalanced tree

UcC{a,b,c}*

N—1
1
CPy =limy_ 0 N Z; cpy(i)  does not exist
=



A first conclusion

The existence of the carry propagation
is more difficult to prove
than the computation of the carry propagation itself
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A definition: the signature of a language

A tree (base Fibonacci) An i-tree
Definition
Signature of L = sequence of the degrees of the nodes

of the j-tree of L in a breadth first traversal.

SF=212212122122121221
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A definition: the signature of a language

Another tree(base %) Another i-tree

S8=212121212121212121
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A definition: the signature of a language

Definition
A sequence s = spsisy--- is validif:
J
VieN D s>j+1.
i=0
Proposition

The signature of an infinite PCE language is valid
and a valid signature uniquely defines an (i)-tree.



Periodic signature

p, g coprime integers p > q>1

Definition

1. r rhythm of directing parameter (q,p)
q

|
—

r — (ro, MNy..., rq,l)

I
o

2. A purely periodic signature

=3



Proposition (Marsault-S. 17)
The signature of Lp is periodic
q
and its period is a rhythm of parameter (q,p) .

Theorem
L PCE with ultimately periodic signature
with rhythm of parameter (q,p) .

Then CP,; exists and CP; = P
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o : 13 ,
fininf iy 2 pvl) < 35 < g < i

vy exists but CPy does not exists
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Definition
LC A* g,(z) generating function of L

g.(z) = Z u.(¢) Zf
=0
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Generating functions of rational languages

L rational language ==  g;(z) rational function
R(2)

Z) =
gL( ) Q(Z)

R(z), Q(z) € Z|z]

L accepted by A =  g,(z) realised by (/,M4, T)
M 4 adjacency matrix of A
ur(6) =1-(Ma)*- T

Cayley-Hamilton Theorem == u, (/) satisfy a linear recurrence relation

defined by P 4 , characteristic polynomial of M4
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Some examples
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0 2
ve=(z 0)

uc(f) = 26

4

Some examples
Po=X?—4

2 4~ (—2)¢
+4( )

Pe=X?—4

Pe=X-2

*a,b,c,d*

c,d

@



Some examples

Po=X%2-4

3[ 1 J4
72 +7(-2

0 2 e
2 o> Po=xta

Pc=X-2

*a,b,c,d¢
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L rational language ==  g,;(z) rational function
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Generating functions of rational languages

L rational language =  g,(z) rational function

g;(z) uniquely written as

T(2),5(2), Q(2) € Ql7]

with degR < deg @ and Q(0) #0

P, is the reciprocal polynomial of Q: P.(z)= Q(1)ze?

The eigenvalues of L are the zeroes A1, Ap,..., Ay of P, and
t
VEEN  u(0) =) X Pi0)
j=1

where deg P; = multiplicity of A; in P, minus 1



Positive rational functions

Theorem (Berstel 71)
f(z) Ry -rational function (not a polynomial)
A maximum of the moduli of its eigenvalues.

(i) A\ is an eigenvalue of f(z) (hence an eigenvalue in R )

(ii) Every eigenvalue of f(z) of modulus A

is of the form \e'? | where ¢'? is a root of the unity

(iii) The multiplicity of any eigenvalue of modulus \
is at most that of A



Positive rational functions

Theorem (Berstel 71)

f(z) Ry -rational function (not a polynomial)
A maximum of the moduli of its eigenvalues.

(i) A\ is an eigenvalue of f(z) (hence an eigenvalue in R )

(ii) Every eigenvalue of f(z) of modulus A

is of the form \e'? | where ¢'? is a root of the unity

(iii) The multiplicity of any eigenvalue of modulus \
is at most that of A

Definition
(i) f(z) isDEV if A is the only eigenvalue of modulus A

(i) f(z) is ADEV if the multiplicity of A\ is greater
than the multiplicity of the other eigenvalues of modulus A



Examples

» O is neither DEV nor ADEV uo(¥) = %2E + %(—2)5

» V is DEV uy () = 22°

» D is ADEV but not DEV up(f) = (30 + 5)2f + L (-2)*



Theorem
A rational language L is ADEV iff the local growth rate -y, exists.

In this case, the modulus of L is equal to ~, .
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Theorem
L ADEV rational PCE and )\ its modulus.

If every quotient of L whose modulus is equal to A is ADEV,

then CP| exists and CP| = %

b, c
d
d a,b,c,d

1% ?O? ?O?
a,b,c,d d
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An unmistakable fit

Our problem

=
Does limy_oo N cpy (i) exist ?
i=0
A rewriting
= '
Does  limy_00 N cp;(Succj(e))  exist ?

I
o

i



An unmistakable fit

Our problem

=
-

1 ,
Does  limy 00 N cpy(Succj(e))  exist ?

]

Il
o



An unmistakable fit

Our problem

N—-1
1 ,
Does IimNHOON E cpy(Succj(e))  exist ?
i=0

The Ergodic Theorem
Theorem (Birkhoff 31)

Let (IC,7) be a dynamical system, ;i a T-invariant measure on K
and f:KC—R in LY(u) (f is absolutely y-integrable).
If (IC,7) is ergodic, then, for i-almost all s in K,

N—1
|imNW%iZ;f(T"(s)):/deu . (*)

If (IC,7) is uniquely ergodic and if f and T are continuous,
then (*) holds for every s in IC .
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Comme il y a une infinité de choses sages
qui sont menées de maniere tres folle,

il y a aussi des folies qui sont menées de maniére trés sage.

MONTESQUIEU

Just as wise ends are oftentimes sought
in the most foolish way,

so foolishness is sometimes sought with great wisdom.

Translation by REUBEN THOMAS
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A bunch of definitions

v

Dynamical system (IC,7) = compact set K
equipped with 7: L — K
Probability measure 1 on K is 7-invariant
if 7 measurable and VB measurable, 1i(771(B)) = u(B)
(IC,7) is ergodic if 771(B) = B implies p(B) =0 or 1
for every T-invariant measure u

v

v

v

(IC,7) is uniquely ergodic if
it admits a unique T-invariant measure

Theorem

Let (IC,7) be a dynamical system, ;i a T-invariant measure on K
and f: KK —R in LY(p) . If (K,7) is ergodic then

for pi-almost all s € K limy_oots Soivgr F(7(5)) = [ic Fdp (*)

If (IC,7) is uniquely ergodic and if f and T are continuous,
then (*) holds for every s in K .
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Turning a numeration system into a dynamical system

v

A=1{0,1,...,r—1}
» LC A", indeed LC (A\ {0})A*: no word of L begins with 0

» “A = set of left infinite words over A
s=--5s5 and s =SS-10 S

» “A equipped with the product topology is a compact set

» Compactification of L = “OL :

KL= {s €A ‘ VjeN Fwl) e 0L sjj,0) right factor of W(j)}
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Turning a numeration system into a dynamical system

Definition of the odometer

» Since no word of L begins with 0
Succy: L — L transformed into
Succy: “0L —“0L by Succ/(“Ow) = “0 Succ,(w)

» 7, odometeron L =
any function from K, into itself that extends Succ;

» If Succ;:“0L — “0L is continuous
71 is the unique continuous function that extends Succ;

Extension of the carry propagation

min {j eN | Slooj] = t[OOJ]} if such j exist
+00 otherwise

A(s, t) = {

Vs € “A cpi(s) = A(s,1.(s))



Turning a numeration system into a dynamical system

Definition of the odometer

» Since no word of L begins with 0
Succy: L — L transformed into
Succy: “0L —“0L by Succ/(“Ow) = “0 Succ,(w)

» 7, odometeron L =
any function from K, into itself that extends Succ;

» If Succ;:“0L — “0L is continuous
71 is the unique continuous function that extends Succ;

Extension of the carry propagation

Proposition
If T, s continuous,
then cp, Is continuous at any point where it takes finite values.
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Greedy numeration systems

» Basis = strictly increasing sequence of integers
G = (Gg)geN with GQ =1
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Greedy numeration systems

Basis = strictly increasing sequence of integers
G = (Gg)ggN with Gy =1

Le = {(n)c | n €N}

If r=Ilimsup| ’“] is finite
Lec C AL with Ag ={0,1,...,r—1}

0*L¢ is is closed under right factor and

Ke=“0Lg={sc“A|VjeN s;q€c0Lls}



Ergodicity of greedy numeration systems

Theorem (Barat-Grabner 16, Grabner—Liardet-Tichy 95)

Let G be a GNS.
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Ergodicity of greedy numeration systems

Theorem (Barat—Grabner 16, Grabner—Liardet—Tichy 95)

Let G be a GNS.
Forevery s in K¢, limj_o SuccG(sU7O]) exists
and defines the odometer 7¢: Kg — K¢ :

Vs € K¢ 76(s) = limj500 SUCCG(SU,O])

Definition
A GNS G is said to be exponential
if there exist two real constants o« >1 and C >0
such that Gy ~ Ca’ when ¢ tends to infinity.

Theorem (Barat-Downarowicz—Liardet 02)

If G is an exponential GNS,
then the dynamical system (Kg,7¢g) is uniquely ergodic.
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Carry propagation in greedy numeration systems

Theorem
If G is an exponential GNS, then CP; exists.

Corollary
If G is an exponential GNS with G, ~ Ca' and if L¢ is PCE,

then CPs exists and CPg = @ 1
G/,_




