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Abstract—Parallel factor analysis (PARAFAC) is one of the
most popular models in the field tensor factorization. Even
though it has proven successful in diverse application fields,
the performance of PARAFAC usually hinges up on the rank
of the factorization, which is typically specified manually by
the practitioner. In this study, we develop a novel parallel
and distributed Bayesian model selection technique for rank
estimation in large-scale PARAFAC models. The proposed ap-
proach integrates ideas from the emerging field of stochastic
gradient Markov Chain Monte Carlo, statistical physics, and
distributed stochastic optimization. As opposed to the existing
methods, which are based on certain heuristics, our method has
a clear mathematical interpretation, and has significantly lower
computational requirements, thanks to data sub-sampling and
parallelization. We provide formal theoretical analysis on the
bias induced by the proposed approach. Our experiments on
synthetic and large-scale real datasets show that our method is
able to find the optimal model order while being significantly
faster than the state-of-the-art.

Index Terms—Tensor factorization, PARAFAC, Bayesian
model selection, Markov Chain Monte Carlo.

I. INTRODUCTION

PARAFAC decomposition is one of the most popular tensor
factorization approaches, which have a variety of applications
in signal processing [1], [2], computer vision [3], [4], data
mining [5], [6], neuroscience [7], [8], chemometrics [9], [10],
and psychometrics [9], [11]. Here, the aim is to decompose an
observed three-way tensor X ≡ {xijk}i,j,k ∈ RI×J×K into
an outer product of three different matrices, A ≡ {air}i,r ∈
RI×R, B ≡ {bjr}j,r ∈ RJ×R, and C ≡ {ckr}k,r ∈ RK×R,
given as follows:

xijk ≈ x̂ijk =

R∑
r=1

airbjrckr. (1)

Here, the observed tensor X is approximated as a sum of
R different ‘rank-one’ tensors (1), where we call a rank-one
tensor as the outer products of three vectors. Accordingly, R
is called the rank of the PARAFAC model.

The performance of PARAFAC-based algorithms usually
hinges up on the rank of the factorization. Automatic estima-
tion of this rank turns out to be a challenging task, and there
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has been several attempts to address it, to name a few [10], [12-
16]. The common theme in these approaches is that they are
first based on some other matrix/tensor decomposition tech-
niques, such as singular value decomposition (SVD), higher-
order SVD, and matrix diagonalization, and then they are
appended with certain heuristics. Even though these methods
have proven useful in certain applications, they often have at
least one of the two major problems. Firstly, they do not have
a clear mathematical interpretation, since they are based on
heuristics. Secondly, the performance of these methods might
be limited in large-scale problems, since they often require
computationally expensive matrix operations.

In this study, we propose a novel Bayesian model selection
technique for rank estimation in PARAFAC models. In partic-
ular, we develop a marginal likelihood estimation method that
is based on the recently developed Stochastic Thermodynamic
Integration (STI) algorithm [17], which combines ideas from
stochastic optimization, Markov Chain Monte Carlo (MCMC),
and statistical physics. We then propose a novel parallel
and distributed variant of STI by exploiting the conditional
independence structure of the PARAFAC models, so that the
computational complexity of the resulting algorithm can be
further reduced by a dramatic factor. We further improve the
convergence speed of this approach by incorporating the local
geometry of the problem. We provide formal theoretical anal-
ysis, where we show that the bias induced by the ultimately
proposed method is bounded under certain regularity condi-
tions. We illustrate the proposed methods on both synthetic
and real datasets. Our results show that the algorithms can
successfully estimate the rank of PARAFAC models with a low
computational budget, even in large-scale distributed settings.

II. PRELIMINARIES

A. Probabilistic interpretation

In this study, we consider a probabilistic PARAFAC model
that has the following hierarchical generative structure:

p(A) =
∏
i,r

p(air), p(B) =
∏
j,r

p(bjr), p(C) =
∏
k,r

p(ckr)

p(X|A,B,C) =
∏
i,j,k

p(xijk|Ai:,Bj:,Ck:) (2)

where p(air), p(bjr), and p(ckr) are called the prior dis-
tributions, p(xijk|·) is called the likelihood function, and
Mi: denotes the ith column of a matrix M. This proba-
bilistic approach generalizes the classical cost-minimization-
based formulation of PARAFAC [9], as one can show that
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it corresponds to a maximum a-posteriori estimation in the
probabilistic model defined in (2).

B. Stochastic Thermodynamic Integration

Bayesian model selection techniques require the computa-
tion of the marginal likelihood of a given model, that is defined
as follows:

p(x|m) =

∫
p(x|θ,m)p(θ|m)dθ, (3)

where x = {xn}Nn=1 denotes a set of i.i.d random variables
considered as the observed data, θ is a latent variable, and
m ∈ {1, . . . ,M} denotes the model-order, which will be our
main source of interest. In this setting, p(x|θ,m) and p(θ|m)
are respectively the likelihood and the prior of the model.

In model selection applications, our aim is to find the model-
order m? that maximizes the marginal likelihood, given as fol-
lows: m? = arg maxm

∫
p(x|θ,m)p(θ|m)dθ. Unfortunately,

computing m? turns out to be intractable except for simple
models, motivating the need for approximate methods.

In this study, we consider the recently proposed the STI al-
gorithm [17], which combines ideas from the newly emerging
field of stochastic gradient MCMC (SG-MCMC) and statistical
physics. The STI algorithm aims at directly computing the log-
arithm of the marginal likelihood by introducing a temperature
variable t and making use of the following identity [18]:1

log p(x) =

∫ 1

0

〈log p(x|θ)〉p(θ|t)dt (4)

where 〈f(x)〉q(x) denotes the expectation of a function f(x)
under the distribution q(x). Here, the key quantity p(θ|t) con-
stitutes a ‘geometric path’ from p(θ) to p(x|θ), and formally
defined as follows: p(θ|t) ∝ p(θ)p(x|θ)t, where ∝ denotes
proportionality up to a positive multiplicative constant.

The main idea in STI is to approximate the one-dimensional
integration over t by using a deterministic numerical integra-
tion method and approximate the expectations by using SG-
MCMC. In particular, for approximating the integration over
t, STI uses a trapezoidal rule, given as follows: log p(x) ≈

T−1∑
i=0

∆ti
〈log p(x|θ)〉p(θ|ti) + 〈log p(x|θ)〉p(θ|ti+1)

2
(5)

where 0 = t0 < t1 < . . . < tT = 1 and ∆ti = ti+1 − ti. For
the expectations in (5), STI uses an SG-MCMC algorithm,
namely the stochastic gradient Langevin dynamics (SGLD),
which iteratively applies the following update equation for
generating samples from the distribution p(θ|t):

θ(t,l) =θ(t,l−1) + ε(t,l)
( N
Ns

t
∑

n∈S(t,l)

∇θ log p(xn|θ(t,l−1))

+∇θ log p(θ(t,l−1))
)

+ η(t,l), (6)

where θ(t,l) denotes the samples (asymptotically) drawn from
p(θ|t). Here, ε(t,l) denotes the step-sizes, and η(t,l) is Gaussian
noise: η(t,l) ∼ N (0, 2ε(t,l)I) with I being the identity matrix,

1For simplicity, we further ignore the order m of the model and consider
the following definition for the marginal likelihood: p(x) =

∫
p(x|θ)p(θ)dθ.

S(t,l) denotes random subsets of [N ] , {1, 2, . . . , N}, and
Ns = |S(t,l)| is the size of each S(t,l). In an algorithmic sense,
this algorithm is identical to the well-known optimization
algorithm, stochastic gradient descent (SGD), except that it
injects an additional Gaussian noise at each iteration.

By using the samples θ(t,l), STI finally approximates the
expectations by using sample averages, given as follows:

〈log p(x|θ)〉p(θ|t) ≈
1

L

N

Ns

L∑
l=1

∑
n∈S(t,l)

log p(xn|θ(t,l)) (7)

where the same data subsamples S(t,l) are used in both
(6) and (7). Verbally, STI generates a sample by using (6)
and immediately evaluates its loglikelihood in (7). These
computations are then ultimately used in (5). Thanks to data
subsampling, STI forms a powerful yet a simple algorithm that
can be suitable for large-scale problems.

III. PARALLEL AND DISTRIBUTED STI FOR PARAFAC

In this section, we will customize the STI algorithm for the
rank estimation problem in PARAFAC. We first represent the
PARAFAC model defined in (2) within the notation introduced
in (3) by setting x ≡ {xijk}i,j,k ∈ RIJK , a vector containing
all the observations, and θ ≡ {A,B,C} ∈ RIR+JR+KR, a
vector containing all the entries of the hidden matrices.

In this context, we apply STI on the model given in (2), for
estimating the rank R. Once the samples θ(t,l) are generated
for a given rank R, then the log-marginal likelihood for this
rank log p(X|R) can be approximated by using (7) and (5).

A. Non-negative PARAFAC models

In certain applications, all the elements in the observed
tensor X and the hidden factors A, B, and C are required
to be non-negative; resulting in a non-negative PARAFAC
decomposition [19-21]. In such cases, the SGLD update rules
will not be applicable since they might result in samples with
negative entries due to the additive update rules.

If a non-negative PARAFAC problem is considered, by fol-
lowing [22-24], we propose to make use of a mirroring trick at
each update step: if there are negative elements in the updated
latent variables, we replace them by their absolute values. This
operation does not violate the convergence guarantees [23].

B. Parallel / distributed implementation

The main computational advantage of STI stems from
the fact that it uses data subsampling. However, we can
improve the efficiency of the algorithm even more by using a
systematic subsampling scheme, rather than drawing arbitrary
sub-samples. In this section we extend SGLD (6), by taking
the multi-linear structure of the PARAFAC model into account
and we will show that this approach significantly reduces the
computational needs by enabling parallelism.

Our approach is inspired by the distributed SGD algorithm
for PARAFAC, which was proposed in [25]. In order to
parallelize SGLD, we first need to carefully partition the
observed data into mutually disjoint subsets, and also partition
the latent variables according to these subsets. An example
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Fig. 1: Illustration of the parts and blocks.

of such a partitioning scheme is shown in Fig. 1. Here, the
observed tensor X is partitioned into 3×3×3 disjoint ‘blocks’
and the hidden factor matrices A, B, and C are partitioned
accordingly into 3 blocks. At each iteration, we will sub-
sample 3 blocks from X (i.e., the smaller cubes, shown in
different colors), such that these blocks will not intersect. We
will call the combinations of such blocks as the ‘parts’. With
this partitioning scheme, the blue (orange, green, respectively)
block is used only while updating the corresponding blue
(orange, green, respectively) block of the three latent matrices.
Therefore we can update the blue, orange, and green block at
the same time, i.e. in parallel, without any conflicts. At the end
of each iteration, only the blocks of the factor matrices need to
be communicated among the processors, which typically yields
a negligible communication cost. In the general case, the data
will be partitioned into B × B × B = B3 blocks and from
these blocks we can form B2 valid parts. Accordingly, the
factor blocks will be partitioned into B blocks. We formally
define this procedure along with the blocks and the parts in the
supplementary document. Note that, as the stochastic gradients
are still unbiased, the same theoretical properties hold.

IV. EXTENDING STI WITH PRECONDITIONED SGLD

Even though SGLD has proven successful in many appli-
cations, it might suffer from poor convergence rates when the
target distribution has scale differences across dimensions [26],
[27]. As a remedy, Li et al. [26] proposed the preconditioned
SGLD (PSGLD) algorithm by extending SGLD with a diago-
nal preconditioning matrix G(θ) that aims to capture the local
geometry of the target densities. The PSGLD algorithm applies
the following update rules for sampling from the distribution
p(θ|t): θ(t,l) = θ(t,l−1)+

ε(t,l)
[
G(θ(t,l−1))

(Nt
Ns

∑
n∈S(t,l)

∇θ log p(xn|θ(t,l−1))

+∇θ log p(θ(t,l−1))
)]

+
√

G(θ(t,l−1))η(t,l). (8)

Here, G(θ) is defined as follows: (for λ > 0)

G(θ(t,l)) , diag
(
1�

(
λ1 +

√
v(θ(t,l))

))
, (9)

where (for α ∈ [0, 1])

v(θ(t,l)) , αv(θ(t,l−1)) + (1− α)ḡ(t,l−1) � ḡ(t,l−1)

ḡ(t,l−1) , (t/Ns)
∑

n∈S(t,l)
∇θ log p(xn|θ(t,l−1)).

The operators � and � denote the element-wise product and
division, respectively, and 1 denotes a vector composed of
ones. The matrix G aims to approximate the diagonal part

of the inverse Fisher information matrix and in practice it
makes the step-sizes more adaptive, i.e., flat directions will
have larger step-sizes than the curved directions.

Despite the fact that PSGLD can achieve a better rate of
convergence when compared to SGLD, the preconditioning
scheme unfortunately introduces an additional bias [26]. In
the sequel, we analyze the overall bias that is induced by the
STI algorithm when it is combined with the PSGLD algorithm
for generating samples.

Theorem 1. Let L =
∫ 1

0
f(t)dt be the log-marginal likelihood

(Eq. (4)) with f(t) = 〈log p(x|θ)〉p(θ|t) and L̂ be the estimator
of L by STI (Eq. (7), (5)) using pSGLD as the sampling method
for θ(t,l) with constant step-size ε. Under certain regularity
conditions, the following bound holds:∣∣∣〈L̂〉 − L∣∣∣ = O

(
1

Kε
+ ε+

1

T 2
+

1− α
α3/2

)
, (10)

where ∆i = 1/T for all i = 1, . . . , T .

The detailed proof and the required conditions are provided
in the supplementary document. This bound is identical to
the one of STI with standard SGLD [17], except that the last
term in the right hand side of (10) is introduced by PSGLD.
However, in practice α is usually set to a value that is close
to 1, therefore this additional bias can be neglected.

Due to the multi-linear structure of the PARAFAC, PSGLD
can be also easily parallelized by using the same approach
described in Sec. III-B. However, in this case we would need
to partition and communicate the preconditioning variable v,
as well as the hidden factor matrices, which would result in a
slightly increased communication cost.

V. EXPERIMENTS

In order to evaluate the proposed algorithms, we conduct
several experiments. We first apply STI with SGLD (STI-
SGLD) and STI with pSGLD (STI-PSGLD) on a simple
Gaussian model, whose marginal likelihood is analytically
available. We show that both algorithms yield accurate es-
timates, whereas STI-PSGLD attains a faster convergence rate
as expected. Due to space constraints, we provide the results
of those experiments in the supplementary document.

In the rest of this section, we will present our experiments
on a non-negative probabilistic PARAFAC model that has the
following probabilistic generative structure:

air ∼ E(λa), bjr ∼ E(λb), ckr ∼ E(λc)

xijk|Ai:,Bj:,Ck: ∼ PO(
∑R

r=1
airbjrckr) (11)

where E and PO denote the exponential and Poisson distri-
butions, respectively.

We carry out all the experiments on a Dell desktop with
3.2 GHz Quad-core Intel Xeon, 12 GB of memory. We do not
use parallelization for the experiments on the synthetic data
and we run the experiments in Python. On the other hand,
we perform the real data experiments by using the parallel
scheme in a simulated distributed environment with a single
computer, where we implement the proposed algorithm in C
with the Open MPI library for parallel computations.
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Fig. 2: Simulation results on 2(a) synthetic data with small
number of iterations; 2(b) synthetic data with large number of
iterations; and 2(c) Facebook dataset.

A. Experiments on synthetic data

In this section, we will present our experiments that we
conduct on synthetic data. We first generate A,B,C by using
generative model (11). We then estimate the log-marginal
likelihood of the model for different values of the true rank.
Unfortunately, the marginal likelihood of this model does not
have an explicit analytical expression. Therefore, we compare
the proposed approaches with an existing marginal likelihood
estimation algorithm, so called Chib’s method [28], [29]. This
method is known to be unbiased, however its computational
cost rapidly increases with the size of the data and can
therefore only be applied to very small-sized problems.

In these experiments, we set I = 10, J = 15, K = 20, λa =
λb = λc = 3 and we estimate the log-marginal likelihood
for R ∈ {1, . . . , 11} using STI-SGLD, STI-PSGLD, and the
Chib’s method. We set T = 10, Ns = IJK/25. We then
generate L = 2000 samples for each temperature ti (for both
STI-SGLD and STI-PSGLD) and use the last 500 samples for
approximating the expectations. During the burn-in period, we
use a decreasing the step-size ε = (aε/l)

b
ε with aε = 10−8,

bε = 0.51 and keep the step-size fixed after burn-in, where l
denotes the iteration number of an SGLD or a PSGLD run.
For Chib’s method, we generate 800 samples for each rank.

The results are shown in Fig. 2(a). As can be seen from
the figure, STI-PSGLD performs better than STI-SGLD: the
estimates obtained via STI-PSGLD are closer to the ones of
Chib’s method, while predicting well the true rank of the
model. The gap between the log-marginal likelihood estimates
obtained by Chib’s method and our methods is caused by the
fact that our methods are biased. Nonetheless, this gap does
not prevent the methods to correctly estimate the optimal rank.

Next, we set L = 4000 and use the last 500 samples for esti-

mating the parameters. The results are shown in Fig. 2(b). We
can observe that, when we increase the number of iterations,
the estimates obtained via STI-SGLD tend to those of STI-
PSGLD, which are almost unchanged when compared with
the previous experiment. This result illustrates the advantage
of STI-PSGLD in terms of speed of convergence.

B. Experiments on real data

In this section, we apply our proposed method to a real
large-scale dataset, called the Facebook dataset [30]. This
dataset is represented as a three-way tensor of dimensions:
42390× 39986× 1506, which contains the information about
which user posted on another user’s wall on what date (User,
User, Date). We model this dataset by using the model
defined in (11) and only consider the parallel variant of STI-
PSGLD for determining the optimal rank for the PARAFAC
decomposition for the given prior distribution. We estimate the
log-marginal likelihood for R ∈ {1, . . . , 11}, we set T = 5,
λa = λb = λc = λ, then generate K = 3000 samples
at each run and use the last 500 samples for estimating the
expectations. For parallelization, we choose B = 12.

The experiments show that the optimal rank changes de-
pending on the prior distribution parameter λ. Indeed, increas-
ing λ would imply that the factor matrices are expected to be
sparser, hence the optimal rank would naturally increase to
adapt this sparsity. The results for three typical λ values are
given in Fig. 2(c): the predicted ranks become 1, 9, and 33
when λ is set to 0.01, 1.8, and 3, respectively.

We compare our algorithm with the recently proposed large-
scale rank estimation algorithm in PARAFAC models, called
efficient core consistency diagnostics (CONCORDIA) [12]. As
reported in [12], when applied to the Facebook dataset, the
CONCORDIA algorithm produces similar results to the ones
obtained via our method with λ = 1.8. The key advantage of
the proposed method over CONCORDIA appears in the com-
putation time and the memory requirements. As CONCORDIA
is based on expensive SVD computations, the implementation
provided in [12] runs out of memory in our experimental
setup, even when R = 3. On the other hand, we observe that
STI-PSGLD still requires less computation time even if we
compare it with the results reported in [12], in which a much
more powerful computer (with 1 TB of memory) is considered.
The total time consumed by STI-PSGLD for this experiment is
30% less than the time consumed by CORCONDIA. Besides,
our computational cost can be made even lower if we further
increase B. A computation time analysis of STI-PSGLD is
provided in the supplementary document.

VI. CONCLUSION

We developed a novel Bayesian model selection tech-
nique for rank estimation in large-scale PARAFAC models.
While having a clear mathematical interpretation, the proposed
method also has significantly lower computational needs when
compared to existing approaches. We provided an upper-
bound for the bias induced by the proposed approach. Our
experiments showed that our method is able to find the optimal
model order in large-scale problems, while being significantly
faster than the state-of-the-art.
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