Rationality \& Recognisability

An introduction to weighted automata theory
Tutorial given at post-WATA 2014 Workshop

Jacques Sakarovitch
CNRS / Telecom ParisTech

Based on

ELEMENTS OF AUTOMATA THEORY

JACQUES SAKAROVITCH

Camiskider

Chapter III

Manfred Droste
Werner Kuich
Heiko Vogler (Eds.)

Handbook of Weighted Automata

Springer

Chapter 4

The presentation is also much inspired by joint works with

Sylvain Lombardy (Univ. Bordeaux)

entitled

- On the equivalence and conjugacy of weighted automata, CSR 2006, the journal version is still under prepapration.
- The validity of weighted automata, CIAA 2012 \& IJAC 2013.
- Vaucanson 2 (2010-2014), a platform for computing with weighted automata.

Outline of the tutorial

1. The model
2. Rationality
3. Recognisability
Part I

The model of weighted automata

Outline of Part I

- Models of computation for computer science anf for the rest of the world
- 1-way Turing machines are equivalent to finite automata
- Once the finite automaton model is well-established, it is generalised to weighted automata
- Weigthed automata are the linear algebra of computer science

A touch of general system theory

Paradigm of a machine for the computer scientists

A touch of general system theory

Paradigm of a machine for the rest of the world

A touch of general system theory

Paradigm of a machine for the rest of the world

A touch of general system theory

$$
y=\alpha(x)
$$

$$
x \in \mathbb{R}^{n}, \quad y \in \mathbb{R}^{m}
$$

Paradigm of a machine for the rest of the world

Getting back to computer science

Getting back to computer science

The input belongs to a free monoid A^{*}

Getting back to computer science

The input belongs to a free monoid A^{*}
The output belongs to the Boolean semiring \mathbb{B}

Getting back to computer science

The input belongs to a free monoid A^{*}
The output belongs to the Boolean semiring \mathbb{B}
The function realised is a language

Getting back to computer science

The input belongs to a direct product of free monoids $A^{*} \times B^{*}$
The output belongs to the Boolean semiring \mathbb{B}

Getting back to computer science

$$
R \subseteq A^{*} \times B^{*}
$$

The input belongs to a direct product of free monoids $A^{*} \times B^{*}$
The output belongs to the Boolean semiring \mathbb{B}
The function realised is a relation between words

The simplest Turing machine

Direction of movement of the read head
The 1-way 1-tape Turing Machine (1W 1T TM)

The simplest Turing machine is equivalent to finite automata

The simplest Turing machine is equivalent to finite automata

$$
b a b \in A^{*}
$$

The simplest Turing machine is equivalent to finite automata

$$
\begin{aligned}
\mathcal{B}_{1} & \\
b a b & A^{*} \\
& \rightarrow p \xrightarrow{b} p \xrightarrow{a} p \xrightarrow{b} q \rightarrow \\
& \rightarrow p \xrightarrow{b} q \xrightarrow{a} q \xrightarrow{b} q \rightarrow
\end{aligned}
$$

The simplest Turing machine is equivalent to finite automata

$$
L\left(\mathcal{B}_{1}\right)=\left\{w \in A^{*} \mid w \in A^{*} b A^{*}\right\}=\left\{\left.w \in A^{*}| | w\right|_{b} \geqslant 1\right\}
$$

$$
\begin{aligned}
& \mathcal{B}_{1} \rightarrow(\sim) \\
& L\left(\mathcal{B}_{1}\right) \subseteq A^{*} \\
& \text { bab } \in A^{*} \\
& \rightarrow p \xrightarrow{b} p \xrightarrow{a} p \xrightarrow{b} q \rightarrow \\
& \rightarrow p \xrightarrow{b} q \xrightarrow{a} q \xrightarrow{b} q \rightarrow
\end{aligned}
$$

Rational (or regular) languages

Languages accepted (or recognized) by finite automata

Languages described by rational (or regular) expressions

Languages defined by MSO formulae

Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton (minimal deterministic automaton)

Direction of movement of the k read heads
The 1-way k-tape Turing Machine (1W kT TM)

The 1W $k T$ Turing machine is equivalent to finite transducers

The 1W $k T$ Turing machine is equivalent to finite transducers

$$
\rightarrow p \xrightarrow{a \mid 1} q \xrightarrow{b \mid 1} r \xrightarrow{b \mid b a} q \xrightarrow{1 \mid a}
$$

The 1W $k T$ Turing machine is equivalent to finite transducers

The 1W $k T$ Turing machine is equivalent to finite transducers

$$
\rightarrow p \xrightarrow{a \mid 1} q \xrightarrow{b \mid 1} r \xrightarrow{b \mid b a} q \xrightarrow{1 \mid a}
$$

$$
(a b b, b a a) \in\left|\mathcal{G}_{1}\right|
$$

$$
\left|\mathcal{G}_{1}\right| \subseteq A^{*} \times B^{*}
$$

Features and shortcomings of the finite transducer model

Closure under composition

Closure of Chomsky classes under rational relations

Interesting subclasses of rational relations

Non closure under complement

Undecidable equivalence

Automata versus languages

Automata versus languages

Automata versus languages

$$
L\left(\mathcal{B}_{1}\right)=L\left(\mathcal{B}_{1}^{\prime}\right)=\left\{\left.w \in A^{*}| | w\right|_{b} \geqslant 1\right\}
$$

Automata versus languages

$$
L\left(\mathcal{B}_{1}\right)=L\left(\mathcal{B}_{1}^{\prime}\right)=\left\{\left.w \in A^{*}| | w\right|_{b} \geqslant 1\right\}=A^{*} b A^{*}
$$

Automata versus languages

Counting the number of successful computations $\left|\mathcal{B}_{1}\right|: b a b \longmapsto 2 \quad\left|\mathcal{B}_{1}^{\prime}\right|: b a b \longmapsto 1$

Automata versus languages

\mathcal{B}_{1}

$$
L\left(\mathcal{B}_{1}^{\prime}\right) \subseteq A^{*}
$$

Counting the number of successful computations
$\left|\mathcal{B}_{1}\right|: w \longmapsto|w|_{b}$
$\left|\mathcal{B}_{1}^{\prime}\right|: w$

1

A new automaton model

The input belongs to a free monoid A^{*}
The output belongs to the integer semiring \mathbb{N}

A new automaton model

The input belongs to a free monoid A^{*}
The output belongs to the integer semiring \mathbb{N}
The function realised is a function from A^{*} to \mathbb{N}

A new automaton model

The input belongs to a free monoid A^{*}
The output belongs to the integer semiring \mathbb{N}
The function realised is a function from A^{*} to \mathbb{N}
we call it a series

A new automaton model

$s_{1}=b+a b+b a+2 b b+a a b+\cdots+2 b b a+3 b b b+\cdots$

The input belongs to a free monoid A^{*}
The output belongs to the integer semiring \mathbb{N}
The function realised is a function from A^{*} to \mathbb{N}
we call it a series

The weighted automaton model

The weighted automaton model

The weighted automaton model

The weighted automaton model

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w

The weighted automaton model

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w
$b a b \quad \longmapsto \quad 1+4=5$

The weighted automaton model

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w
$b a b \quad \longmapsto \quad 1+4=5=\langle 101\rangle_{2}$

The weighted automaton model

$$
\begin{aligned}
& \mathcal{C}_{1} \\
& \quad \xrightarrow{1} p \xrightarrow{b} p \xrightarrow{a} p \xrightarrow{b} q \xrightarrow{1}\left|\mathcal{C}_{1}\right| \in \mathbb{N}\left\langle\left\langle A^{*}\right\rangle\right\rangle \\
& \xrightarrow{1} p \xrightarrow{b} q \xrightarrow{2 a} q \xrightarrow{2 b} q \xrightarrow{1}
\end{aligned}
$$

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w
$b a b \quad \longmapsto \quad 1+4=5$
$\left|\mathcal{C}_{1}\right|: A^{*} \longrightarrow \mathbb{N}$

The weighted automaton model

$$
\begin{aligned}
& \mathcal{C}_{1} \\
& \quad \xrightarrow{1} p \xrightarrow{b} p \xrightarrow{a} p \xrightarrow{b} q \xrightarrow{1}\left|\mathcal{C}_{1}\right| \in \mathbb{N}\left\langle\left\langle A^{*}\right\rangle\right\rangle \\
& \xrightarrow{1} p \xrightarrow{b} q \xrightarrow{2 a} q \xrightarrow{2 b} q \xrightarrow{1}
\end{aligned}
$$

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w

$$
\left|\mathcal{C}_{1}\right|=b+a b+2 b a+3 b b+a a b+2 a b a+\cdots+5 b a b+\cdots
$$

The weighted automaton model (2)

$$
\begin{aligned}
& \mathcal{L}_{1} \xrightarrow{0 \rightarrow 0} \\
& \xrightarrow{0} p \xrightarrow{1 b} p \xrightarrow{0 a} p \xrightarrow{1 b} p \xrightarrow{0} \\
& \xrightarrow{0} q \xrightarrow{0 b} q \xrightarrow{1 a} q \xrightarrow{0 b} q \xrightarrow{0}
\end{aligned}
$$

- Weight of a path c : product, that is, the sum, of the weights of transitions in c
- Weight of a word w:
sum, that is, the min of the weights of paths with label w
$b a b \longmapsto \min (1+0+1,0+1+0)=1 \quad\left|\mathcal{L}_{1}\right|: A^{*} \longrightarrow \mathbb{Z} \min$

The weighted automaton model (2)

$$
\begin{aligned}
& \mathcal{L}_{1} \xrightarrow{0 a} \overbrace{0}^{0 a}\left|\mathcal{L}_{1}\right| \in \mathbb{Z} \min \left\langle\left\langle A^{*}\right\rangle\right\rangle \\
& \xrightarrow{0} p \xrightarrow{1 b} p \xrightarrow{0 a} p \xrightarrow{1 b} p \xrightarrow{0} \\
& \xrightarrow{0} q \xrightarrow{0 b} q \xrightarrow{1 a} q \xrightarrow{0 b} q \xrightarrow{0}
\end{aligned}
$$

- Weight of a path c : product, that is, the sum, of the weights of transitions in c
- Weight of a word w:
sum, that is, the min of the weights of paths with label w

$$
\left|\mathcal{C}_{1}\right|=01_{A^{*}}+0 a+0 b+1 a b+1 b a+0 b b+\cdots+1 b a b+\cdots
$$

The weighted automaton model (system theory mode)

The input belongs to a free monoid A^{*}
The output belongs to a semiring \mathbb{K}
The function realised is a function from A^{*} to \mathbb{K} : a series in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

The weighted automaton model (sytem theory mode)

$$
s: A^{*} \times B^{*} \rightarrow \mathbb{K} \quad s \in \mathbb{K}\left\langle\left\langle A^{*} \times B^{*}\right\rangle\right\rangle
$$

The input belongs to a direct product of free monoids $A^{*} \times B^{*}$
The output belongs to a semiring \mathbb{K}
The function realised is a function from $A^{*} \times B^{*}$ to \mathbb{K} :

$$
\text { a series in } \mathbb{K}\left\langle\left\langle A^{*} \times B^{*}\right\rangle\right\rangle
$$

Richness of the model of weighted automata

- \mathbb{B}
- \mathbb{N}
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- $\langle\mathbb{Z} \cup+\infty, \min ,+\rangle$
- $\langle\mathbb{Z}, \min , \max \rangle$
- $\mathfrak{P}\left(B^{*}\right)=\mathbb{B}\left\langle\left\langle B^{*}\right\rangle\right\rangle$
- $\mathbb{N}\left\langle\left\langle B^{*}\right\rangle\right\rangle$
- $\mathfrak{P}(F(B))$
'classic' automata
‘usual’ counting
numerical multiplicity
Min-plus automata
fuzzy automata
transducers
weighted transducers
pushdown automata

Series play the role of languages

$\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ plays the role of $\mathfrak{P}\left(A^{*}\right)$

Series play the role of relations

$\mathbb{K}\left\langle\left\langle A^{*} \times B^{*}\right\rangle\right\rangle$ plays the role of $\mathfrak{P}\left(A^{*} \times B^{*}\right)$

Weighted automata theory

is the linear algebra

of computer science

Part II

Rationality

Outline of Part II

- Definition of rational series
- The Fundamental Theorem of Finite Automata What can be computed by a finite automaton is exactly what can be computed by the star operation (together with the algebra operations)
- Morphisms of weighted automata

The semiring $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

\mathbb{K} semiring $\quad A^{*}$ free monoid

$$
\begin{array}{ll}
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle & s: A^{*} \rightarrow \mathbb{K} \quad s: w \longmapsto\langle s, w\rangle \\
s=\sum_{w \in A^{*}}\langle s, w\rangle w
\end{array}
$$

Point-wise addition
Cauchy product $\langle s+t, w\rangle=\langle s, w\rangle+\langle t, w\rangle$ $\langle s t, w\rangle=\sum_{u v=w}\langle s, u\rangle\langle t, v\rangle$
$\{(u, v) \mid u v=w\}$ finite

Cauchy product well-defined
$\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ is a semiring

The semiring $\mathbb{K}\langle\langle M\rangle\rangle$

$$
\begin{gathered}
\mathbb{K} \text { semiring } \quad M \text { monoid } \\
s \in \mathbb{K}\langle\langle M\rangle\rangle \quad s: M \rightarrow \mathbb{K} \quad s: m \longmapsto\langle s, m\rangle \\
s=\sum_{m \in M}\langle s, m\rangle m
\end{gathered}
$$

Point-wise addition

$$
\begin{aligned}
\langle s+t, m\rangle & =\langle s, m\rangle+\langle t, m\rangle \\
\langle s t, m\rangle & =\sum_{x y=m}\langle s, x\rangle\langle t, y\rangle
\end{aligned}
$$

$\forall m\{(x, y) \mid x y=m\}$ finite $\quad \Longrightarrow \quad$ Cauchy product well-defined

The semiring $\mathbb{K}\langle\langle M\rangle\rangle$

Conditions for $\{(x, y) \mid x y=m\}$ finite for all m
Definition
M is graded if M equipped with a length function φ
$\varphi: M \rightarrow \mathbb{N} \quad \varphi\left(m m^{\prime}\right)=\varphi(m)+\varphi\left(m^{\prime}\right)$
M f.g. and graded $\Longrightarrow \mathbb{K}\langle\langle M\rangle\rangle$ is a semiring

Examples
\mathbb{M} trace monoid, then $\mathbb{K}\langle\langle M\rangle\rangle$ is a semiring
$\mathbb{K}\left\langle\left\langle A^{*} \times B^{*}\right\rangle\right\rangle$ is a semiring
$F(A)$, the free group on A, is not graded

The algebra $\mathbb{K}\langle\langle M\rangle\rangle$

$$
\begin{array}{lll}
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle & s: M \rightarrow \mathbb{K} & s: m \longmapsto\langle s, m\rangle \\
s=\sum_{m \in M}\langle s, m\rangle m &
\end{array}
$$

Point-wise addition
Cauchy product

External multiplication

$$
\langle s+t, m\rangle=\langle s, m\rangle+\langle t, m\rangle
$$

$$
\langle s t, m\rangle=\sum_{x y=m}\langle s, x\rangle\langle t, y\rangle
$$

$\langle k s, m\rangle=k\langle s, m\rangle$
$\mathbb{K}\langle\langle M\rangle\rangle$ is an algebra

The star operation

$$
t \in \mathbb{K} \quad t^{*}=\sum_{n \in \mathbb{N}} t^{n}
$$

How to define infinite sums ?
One possible solution

$$
\text { Topology on } \mathbb{K}
$$

Definition of summable families and of their sum

$$
t^{*} \text { defined if } \quad\left\{t^{n}\right\}_{n \in \mathbb{N}} \text { summable }
$$

Other possible solutions
axiomatic definition of star, equational definition of star

The star operation

$$
t \in \mathbb{K} \quad t^{*}=\sum_{n \in \mathbb{N}} t^{n}
$$

The star operation

$$
t \in \mathbb{K}
$$

$$
t^{*}=\sum_{n \in \mathbb{N}} t^{n}
$$

- $\forall \mathbb{K} \quad\left(0_{\mathbb{K}}\right)^{*}=1_{\mathbb{K}}$
- $\mathbb{K}=\mathbb{N} \quad \forall x \neq 0 \quad x^{*}$ not defined.
- $\mathbb{K}=\mathcal{N}=\mathbb{N} \cup\{+\infty\} \quad \forall x \neq 0 \quad x^{*}=\infty$.
- $\mathbb{K}=\mathbb{Q} \quad\left(\frac{1}{2}\right)^{*}=2$ with the natural topology, $\left(\frac{1}{2}\right)^{*}$ is undefined with the discrete topology.

The star operation

$$
t \in \mathbb{K} \quad t^{*}=\sum_{n \in \mathbb{N}} t^{n}
$$

In any case

$$
t^{*}=1_{\mathbb{K}}+t t^{*}
$$

Star has the same flavor as the inverse

If \mathbb{K} is a ring

$$
\begin{gathered}
t^{*}\left(1_{\mathbb{K}}-t\right)=1_{\mathbb{K}} \\
\frac{1_{\mathbb{K}}}{1_{\mathbb{K}}-t}=1_{\mathbb{K}}+t+t^{2}+\cdots+t^{n}+\cdots
\end{gathered}
$$

Star of series

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle \quad \text { When is } s^{*}=\sum_{n \in \mathbb{N}} s^{n}\right. \text { defined ? }
$$

Star of series

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

$$
\text { When is } s^{*}=\sum_{n \in \mathbb{N}} s^{n} \text { defined? }
$$

Topology on \mathbb{K} yields topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Topology on \mathbb{K} given by a distance c

$$
\mathbf{c}: \mathbb{K} \times \mathbb{K} \rightarrow \mathbb{R}_{+}
$$

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Topology on \mathbb{K} given by a distance \mathbf{c} $\mathbf{c}: \mathbb{K} \times \mathbb{K} \rightarrow \mathbb{R}_{+}$

- symmetry:

$$
\mathbf{c}(x, y)=\mathbf{c}(y, x)
$$

- positivity: $\quad \mathbf{c}(x, y)>0$ if $x \neq y$ and $\mathbf{c}(x, x)=0$
- triangular inequality: $\mathbf{c}(x, y) \leqslant \mathbf{c}(x, z)+\mathbf{c}(y, z)$

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Topology on \mathbb{K} given by a distance \mathbf{c} c: $\mathbb{K} \times \mathbb{K} \rightarrow \mathbb{R}_{+}$

- symmetry:

$$
\mathbf{c}(x, y)=\mathbf{c}(y, x)
$$

- positivity: $\quad \mathbf{c}(x, y)>0$ if $x \neq y$ and $\mathbf{c}(x, x)=0$
- triangular inequality: $\mathbf{c}(x, y) \leqslant \mathbf{c}(x, z)+\mathbf{c}(y, z)$

A sequence $\left\{k_{n}\right\}_{n \in \mathbb{N}}$ of elements of \mathbb{K} converges toward k
$k=\lim _{n \rightarrow+\infty} k_{n}$

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad \mathbf{c}\left(k_{n}, k\right) \leqslant \varepsilon
$$

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Topology on \mathbb{K} given by a distance \mathbf{c} c: $\mathbb{K} \times \mathbb{K} \rightarrow \mathbb{R}_{+}$

- symmetry:

$$
\mathbf{c}(x, y)=\mathbf{c}(y, x)
$$

- positivity: $\quad \mathbf{c}(x, y)>0$ if $x \neq y$ and $\mathbf{c}(x, x)=0$
- triangular inequality: $\mathbf{c}(x, y) \leqslant \mathbf{c}(x, z)+\mathbf{c}(y, z)$

A sequence $\left\{k_{n}\right\}_{n \in \mathbb{N}}$ of elements of \mathbb{K} converges toward k
$k=\lim _{n \rightarrow+\infty} k_{n}$

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad \mathbf{c}\left(k_{n}, k\right) \leqslant \varepsilon
$$

Remark
Always assume $\mathbf{c}(x, y) \leqslant 1$

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Topology on \mathbb{K} given by a distance \mathbf{c} c: $\mathbb{K} \times \mathbb{K} \rightarrow \mathbb{R}_{+}$

- symmetry:

$$
\begin{aligned}
& \mathbf{c}(x, y)=\mathbf{c}(y, x) \\
& \mathbf{c}(x, y)>0 \quad \text { if } \quad x \neq y \quad \text { and } \quad \mathbf{c}(x, x)=0
\end{aligned}
$$

- positivity:
- triangular inequality: $\mathbf{c}(x, y) \leqslant \mathbf{c}(x, z)+\mathbf{c}(y, z)$

A sequence $\left\{k_{n}\right\}_{n \in \mathbb{N}}$ of elements of \mathbb{K} converges toward k
$k=\lim _{n \rightarrow+\infty} k_{n}$

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad \mathbf{c}\left(k_{n}, k\right) \leqslant \varepsilon
$$

Remark
Always assume $\mathbf{c}(x, y) \leqslant 1$
Remark
Discrete topology

$$
x \neq y \Rightarrow \mathbf{c}(x, y)=1
$$

Converging sequences $=$ stationnary sequences

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

- $\mathbb{B}, \mathbb{N}, \mathbb{Z}$,
- $\mathcal{M}=\langle\mathbb{N}, \min ,+\rangle$
- $\mathbb{Q}, \mathbb{Q}_{+}, \mathbb{R}, \mathbb{R}_{+}$
discrete topology
discrete topology
"natural distance"

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Definition
$\left\{s_{n}\right\}_{n \in \mathbb{N}}, s_{n} \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$, converges toward s iff $\forall w \in A^{*}\left\langle s_{n}, w\right\rangle$ converges toward $\langle s, w\rangle$ in \mathbb{K}.

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Definition

$$
\begin{aligned}
& \left\{s_{n}\right\}_{n \in \mathbb{N}}, s_{n} \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle, \text { converges toward } s \text { iff } \\
& \quad \forall w \in A^{*}\left\langle s_{n}, w\right\rangle \text { converges toward }\langle s, w\rangle \text { in } \mathbb{K} .
\end{aligned}
$$

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ is defined by a distance \mathbf{d} :

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Definition

$$
\begin{aligned}
& \left\{s_{n}\right\}_{n \in \mathbb{N}}, s_{n} \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle, \text { converges toward } s \text { iff } \\
& \quad \forall w \in A^{*}\left\langle s_{n}, w\right\rangle \text { converges toward }\langle s, w\rangle \text { in } \mathbb{K} .
\end{aligned}
$$

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ is defined by a distance \mathbf{d} :

If \mathbb{K} is equipped with the discrete topology:

$$
\mathbf{e}(s, t)=\min \left\{n \in \mathbb{N}\left|\exists w \in A^{*} \quad\right| w \mid=n \quad \text { and } \quad\langle s, w\rangle \neq\langle t, w\rangle\right\}
$$

$$
\mathbf{d}(s, t)=2^{-\mathbf{e}(s, t)}
$$

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Definition

$$
\begin{aligned}
& \left\{s_{n}\right\}_{n \in \mathbb{N}}, s_{n} \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle, \text { converges toward } s \text { iff } \\
& \quad \forall w \in A^{*}\left\langle s_{n}, w\right\rangle \text { converges toward }\langle s, w\rangle \text { in } \mathbb{K} .
\end{aligned}
$$

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ is defined by a distance \mathbf{d} :

If \mathbb{K} is equipped with the topology defined by the distance \mathbf{c} :

$$
\mathbf{d}(s, t)=\frac{1}{2} \sum_{n \in \mathbb{N}}\left(\frac{1}{2^{n}} \max \{\mathbf{c}(\langle s, w\rangle,\langle t, w\rangle)| | w \mid=n\}\right) .
$$

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Proposition
If \mathbb{K} is a topological semiring, then $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$, equipped with the simple convergence topology, is a topological semiring.

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Proposition
If \mathbb{K} is a topological semiring, then $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$, equipped with the simple convergence topology, is a topological semiring.

Definition
Summable family of series.

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Proposition
If \mathbb{K} is a topological semiring, then $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$, equipped with the simple convergence topology, is a topological semiring.

Definition
Summable family of series.
Definition
Locally finite family of series.

The simple convergence topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Proposition
If \mathbb{K} is a topological semiring, then $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$, equipped with the simple convergence topology, is a topological semiring.

Definition
Summable family of series.
Definition
Locally finite family of series.
Proposition
A locally finite family of series is summable.

Star of series

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

$$
\text { When is } s^{*}=\sum_{n \in \mathbb{N}} s^{n} \text { defined? }
$$

Topology on \mathbb{K} yields topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Star of series

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad \text { When is } s^{*}=\sum_{n \in \mathbb{N}} s^{n} \text { defined ? }
$$

Topology on \mathbb{K} yields topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
s proper $\quad s_{0}=\left\langle s, 1_{A^{*}}\right\rangle=0_{\mathbb{K}}$

Star of series

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad \text { When is } s^{*}=\sum_{n \in \mathbb{N}} s^{n} \text { defined ? }
$$

Topology on \mathbb{K} yields topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
s proper $\quad s_{0}=\left\langle s, 1_{A^{*}}\right\rangle=0_{\mathbb{K}}$
s proper $\quad \Longrightarrow \quad s^{*}$ defined

Star of series

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad \text { When is } s^{*}=\sum_{n \in \mathbb{N}} s^{n} \text { defined ? }
$$

Topology on \mathbb{K} yields topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

$$
\begin{aligned}
& s \text { proper } \quad s_{0}=\left\langle s, 1_{A^{*}}\right\rangle=0_{\mathbb{K}} \\
& s \text { proper } \quad \Longrightarrow \quad s^{*} \text { defined } \\
& \forall s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad s=s_{0}+s_{\mathrm{p}} \quad \text { with } s_{\mathrm{p}} \text { proper }
\end{aligned}
$$

Star of series

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad \text { When is } s^{*}=\sum_{n \in \mathbb{N}} s^{n} \text { defined ? }
$$

Topology on \mathbb{K} yields topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
s proper $\quad s_{0}=\left\langle s, 1_{A^{*}}\right\rangle=0_{\mathbb{K}}$
s proper $\quad \Longrightarrow \quad s^{*}$ defined
$\forall s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad s=s_{0}+s_{\mathrm{p}} \quad$ with s_{p} proper

Definition
\mathbb{K} strong product of two summable families summable.

Star of series

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad \text { When is } s^{*}=\sum_{n \in \mathbb{N}} s^{n} \text { defined ? }
$$

Topology on \mathbb{K} yields topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
s proper $\quad s_{0}=\left\langle s, 1_{A^{*}}\right\rangle=0_{\mathbb{K}}$

$$
s \text { proper } \quad \Longrightarrow \quad s^{*} \text { defined }
$$

$\forall s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad s=s_{0}+s_{\mathrm{p}} \quad$ with s_{p} proper
Definition
\mathbb{K} strong product of two summable families summable.
Proposition
\mathbb{K} strong, $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad s^{*}$ is defined iff s_{0}^{*} is defined

$$
s^{*}=\left(s_{0}^{*} s_{\mathrm{p}}\right)^{*} s_{0}^{*}=s_{0}^{*}\left(s_{\mathrm{p}} s_{0}^{*}\right)^{*}
$$

Rational series

$$
\mathbb{K}\left\langle A^{*}\right\rangle \subseteq \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad \text { subalgebra of polynomials }
$$

\mathbb{K} Rat $A^{*} \quad$ closure of $\mathbb{K}\left\langle A^{*}\right\rangle \quad$ under

- sum
- product
- exterior multiplication
- and star
$\mathbb{K} \operatorname{Rat} A^{*} \subseteq \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad$ subalgebra of rational series

Fundamental theorem of finite automata

Theorem

$$
s \in \mathbb{K} \operatorname{Rat} A^{*} \quad \Longleftrightarrow \quad \exists \mathcal{A} \in \mathbb{K} W \mathrm{~A}\left(A^{*}\right) \quad s=|\mathcal{A}|
$$

Fundamental theorem of finite automata

Theorem

$$
s \in \mathbb{K} \operatorname{Rat} A^{*} \quad \Longleftrightarrow \quad \exists \mathcal{A} \in \mathbb{K} W \mathrm{~A}\left(A^{*}\right) \quad s=|\mathcal{A}|
$$

Kleene theorem ?

Fundamental theorem of finite automata

Theorem

$$
s \in \mathbb{K} \operatorname{Rat} A^{*} \quad \Longleftrightarrow \quad \exists \mathcal{A} \in \mathbb{K} W A\left(A^{*}\right) \quad s=|\mathcal{A}|
$$

Kleene theorem ?

Theorem
M finitely generated graded monoid

$$
s \in \mathbb{K} \operatorname{Rat} M \quad \Longleftrightarrow \quad \exists \mathcal{A} \in \mathbb{K} W \mathrm{WA}(M) \quad s=|\mathcal{A}|
$$

Fundamental theorem of finite automata

Standard automaton

$$
\mathrm{E}_{1}=\left(\frac{1}{6} a^{*}+\frac{1}{3} b^{*}\right)^{*}
$$

Standard automaton

$$
\mathrm{E}_{1}=\left(\frac{1}{6} a^{*}+\frac{1}{3} b^{*}\right)^{*}
$$

Automata are matrices

- Automata are (essentially) matrices: $\mathcal{A}=\langle I, E, T\rangle$
- Computing the behaviour of an automaton boils down to solving a linear system $\quad X=E \cdot X+T$
- Solving the linear system (s) amounts to invert the matrix $(I d-E) \quad$ (hence the name rational)
- The inversion of $I d-E$ is realised by an infinite sum $I d+E+E^{2}+E^{3}+\cdots$: the star of E

Automata are matrices

$$
\mathcal{C}_{1}=\left\langle l_{1}, E_{1}, T_{1}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
a+b & b \\
0 & 2 a+2 b
\end{array}\right),\binom{0}{1}\right\rangle .
$$

Automata are matrices

$$
\mathcal{A}=\langle I, E, T\rangle \quad E=\text { incidence matrix }
$$

Automata are matrices

$$
\mathcal{A}=\langle I, E, T\rangle \quad E=\text { incidence matrix }
$$

Notation
$\mathbf{w l}(x)=$ weighted label of x
In our model, e transition $\Rightarrow \mathbf{w l}(e)=k a$

Automata are matrices

$$
\mathcal{A}=\langle I, E, T\rangle \quad E=\text { incidence matrix }
$$

Notation
$\mathbf{w l}(x)=$ weighted label of x
In our model, e transition $\Rightarrow \mathbf{w l}(e)=k a$

$$
E_{p, q}=\sum\{\mathbf{w} \mathbf{l}(e) \mid e \quad \text { transition from } p \text { to } q\}
$$

Automata are matrices

$$
\mathcal{A}=\langle I, E, T\rangle \quad E=\text { incidence matrix }
$$

Notation
$\mathbf{w l}(x)=$ weighted label of x
In our model, e transition $\Rightarrow \mathbf{w l}(e)=k a$

$$
E_{p, q}=\sum\{\mathbf{w} \mathbf{l}(e) \mid e \quad \text { transition from } p \text { to } q\}
$$

Lemma
$E_{p, q}^{n}=\sum\{\mathbf{w l}(c) \mid c$ computation from p to q of length $n\}$

Automata are matrices

$$
\begin{array}{ll}
\mathcal{A}=\langle I, E, T\rangle & E=\text { incidence matrix } \\
E_{p, q}=\sum\{\mathbf{w l}(e) \mid e & \text { transition from } p \text { to } q\}
\end{array}
$$

Automata are matrices

$$
\begin{aligned}
& \mathcal{A}=\langle I, E, T\rangle \quad E=\text { incidence matrix } \\
& E_{p, q}=\sum\{\mathbf{w}(e) \mid e\text { transition from } p \text { to } q\} \\
& E^{*}=\sum_{n \in \mathbb{N}} E^{n} \\
& E_{p, q}^{*}=\sum\{\mathbf{w}(c) \mid c \quad \text { computation from } p \text { to } q\}
\end{aligned}
$$

Automata are matrices

$$
\begin{gathered}
\mathcal{A}=\langle I, E, T\rangle \quad E=\text { incidence matrix } \\
E_{p, q}=\sum\{\mathbf{w} \mathbf{l}(e) \mid e \text { transition from } p \text { to } q\} \\
E^{*}=\sum_{n \in \mathbb{N}} E^{n} \\
E_{p, q}^{*}=\sum\{\mathbf{w l}(c) \mid c \text { computation from } p \text { to } q\} \\
|\mathcal{A}|=I \cdot E^{*} \cdot T
\end{gathered}
$$

Automata are matrices

$$
\begin{array}{rr}
\mathbb{K} \text { semiring } & M \text { graded monoid } \\
\mathbb{K}\langle\langle M\rangle\rangle\rangle^{Q \times Q} & \text { is isomorphic to } \\
E \in \mathbb{K}\langle\langle M\rangle\rangle^{Q \times Q} \quad\langle\langle M\rangle\rangle \\
& E \text { proper }
\end{array} \quad \Longrightarrow \quad E^{*} \text { defined }
$$

Automata are matrices

$$
\begin{aligned}
& \qquad \mathbb{K} \text { semiring } \quad M \text { graded monoid } \\
& \mathbb{K}\langle\langle M\rangle\rangle^{Q \times Q} \text { is isomorphic to } \mathbb{K}^{Q \times Q}\langle\langle M\rangle\rangle \\
& E \in \mathbb{K}\langle\langle M\rangle\rangle^{Q \times Q} \quad E \text { proper } \quad \Longrightarrow \quad E^{*} \text { defined } \\
& \text { Theorem } \\
& \text { The entries of } E^{*} \text { are } \\
& \text { in the rational closure of the entries of } E
\end{aligned}
$$

Fundamental theorem of finite automata

\mathbb{K} semiring
M graded monoid
$\mathbb{K}\langle\langle M\rangle\rangle{ }^{Q \times Q} \quad$ is isomorphic to $\quad \mathbb{K}^{Q \times Q}\langle\langle M\rangle\rangle$
$E \in \mathbb{K}\langle\langle M\rangle\rangle^{Q \times Q} \quad E$ proper $\quad \Longrightarrow \quad E^{*}$ defined

Theorem
The entries of E^{*} are
in the rational closure of the entries of E

Theorem
The family of behaviours of weighted automata over M with coefficients in \mathbb{K} is rationally closed.

The collect theorem

$$
\mathbb{K}\left\langle\left\langle A^{*} \times B^{*}\right\rangle\right\rangle \text { is isomorphic to }\left[\mathbb{K}\left\langle\left\langle B^{*}\right\rangle\right\rangle\right]\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

Theorem
Under the above isomorphism,

$$
\mathbb{K} \text { Rat } A^{*} \times B^{*} \text { corresponds to }\left[\mathbb{K} \operatorname{Rat} B^{*}\right] \operatorname{Rat} A^{*}
$$

Morphisms of automata

1. Automata are structures.

Morphisms of automata

1. Automata are structures.

What are the morphisms for those structures?

Morphisms of automata

1. Automata are structures.

What are the morphisms for those structures?
2. Automata realise series

Morphisms of automata

1. Automata are structures.

What are the morphisms for those structures?
2. Automata realise series

Can we find an equivalent smaller automaton?

Morphisms of automata

1. Automata are structures.

What are the morphisms for those structures?
2. Automata realise series

Can we find an equivalent smaller automaton? of minimal size?

Morphisms of automata

1. Automata are structures.

What are the morphisms for those structures?
2. Automata realise series

Can we find an equivalent smaller automaton? of minimal size?
that respects the structure?

Morphisms of Boolean automata

Minimisation of deterministic automata

Morphisms of Boolean automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{B}$-automata of dimension Q and R

A map $\varphi: Q \rightarrow R$ defines a morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ if

$$
(p, a, q) \in E \quad \Longrightarrow \quad(\varphi(p), a, \varphi(q)) \in F
$$

Morphisms of Boolean automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{B}$-automata of dimension Q and R
A map $\varphi: Q \rightarrow R$ defines a morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ if

$$
(p, a, q) \in E \quad \Longrightarrow \quad(\varphi(p), a, \varphi(q)) \in F
$$

- The image of a path is a path

Morphisms of Boolean automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{B}$-automata of dimension Q and R
A map $\varphi: Q \rightarrow R$ defines a morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ if

$$
(p, a, q) \in E \quad \Longrightarrow \quad(\varphi(p), a, \varphi(q)) \in F
$$

- The image of a path is a path
- The image of a successful path is a successful path

Morphisms of Boolean automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{B}$-automata of dimension Q and R
A map $\varphi: Q \rightarrow R$ defines a morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ if

$$
(p, a, q) \in E \quad \Longrightarrow \quad(\varphi(p), a, \varphi(q)) \in F
$$

- The image of a path is a path
- The image of a successful path is a successful path
- The label of the image of a path is the label of the path

Morphisms of Boolean automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{B}$-automata of dimension Q and R
A map $\varphi: Q \rightarrow R$ defines a morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ if

$$
(p, a, q) \in E \quad \Longrightarrow \quad(\varphi(p), a, \varphi(q)) \in F
$$

- The image of a path is a path
- The image of a successful path is a successful path
- The label of the image of a path is the label of the path

$$
|\mathcal{A}| \subseteq|\mathcal{B}|
$$

Morphisms of Boolean automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{B}$-automata of dimension Q and R
A map $\varphi: Q \rightarrow R$ defines a morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ if

$$
(p, a, q) \in E \quad \Longrightarrow \quad(\varphi(p), a, \varphi(q)) \in F
$$

Problem:
Find conditions such that $\quad|\mathcal{A}|=|\mathcal{B}|$

Morphisms of Boolean automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{B}$-automata of dimension Q and R
A map $\varphi: Q \rightarrow R$ defines a morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ if

$$
(p, a, q) \in E \quad \Longrightarrow \quad(\varphi(p), a, \varphi(q)) \in F
$$

Problem:
Find conditions such that $\quad|\mathcal{A}|=|\mathcal{B}|$
Solution:
Local conditions

Morphisms of Boolean automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{B}$-automata of dimension Q and R
A map $\varphi: Q \rightarrow R$ defines a morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ if

$$
(p, a, q) \in E \quad \Longrightarrow \quad(\varphi(p), a, \varphi(q)) \in F
$$

Problem:
Find conditions such that $\quad|\mathcal{A}|=|\mathcal{B}|$
Solution:
Local conditions
Problem:
Neither the definition, nor the solution, extend directly to \mathbb{B}-automata

Conjugacy of automata

Definition
Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata.
\mathcal{A} is conjugate to \mathcal{B} if
$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$

Conjugacy of automata

Definition

Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata.
\mathcal{A} is conjugate to \mathcal{B} if
$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$
This is denoted as $\quad \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

Conjugacy of automata

$$
\begin{gathered}
X_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) . \\
\mathcal{A}_{1} \xrightarrow{X_{1}} \mathcal{B}_{1}
\end{gathered}
$$

Conjugacy of automata

$$
\begin{aligned}
& \mathcal{C}^{\prime}=\left\langle\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & z & 0 \\
0 & 0 & z \\
0 & 0 & 2 z
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right\rangle \quad \mathcal{A}^{\prime}=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & z \\
0 & 2 z
\end{array}\right),\binom{0}{1}\right\rangle \\
&\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right), \\
&\left(\begin{array}{ccc}
0 & z & 0 \\
0 & 0 & z \\
0 & 0 & 2 z
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & z \\
0 & 2 z
\end{array}\right) \\
&\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 2
\end{array}\right) \cdot\binom{0}{1}
\end{aligned}
$$

Conjugacy of automata

Definition

Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata.
\mathcal{A} is conjugate to \mathcal{B} if
$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$
This is denoted as $\quad \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

Conjugacy of automata

Definition

Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata.
\mathcal{A} is conjugate to \mathcal{B} if
$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$
This is denoted as $\quad \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

- Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

Conjugacy of automata

Definition

Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata.
\mathcal{A} is conjugate to \mathcal{B} if
$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$
This is denoted as $\quad \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

- Conjugacy is a preorder
(transitive and reflexive, but not symmetric).
- $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B} \quad$ implies that \mathcal{A} and \mathcal{B} are equivalent.

Conjugacy of automata

Definition

Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata. \mathcal{A} is conjugate to \mathcal{B} if
$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$
This is denoted as $\quad \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

- Conjugacy is a preorder
(transitive and reflexive, but not symmetric).
- $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B} \quad$ implies that \mathcal{A} and \mathcal{B} are equivalent.

I EET

Conjugacy of automata

Definition

Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata.

$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$
This is denoted as $\quad \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

- Conjugacy is a preorder
(transitive and reflexive, but not symmetric).
- $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B} \quad$ implies that \mathcal{A} and \mathcal{B} are equivalent.

$$
I E E T=I E E X U
$$

Conjugacy of automata

Definition

Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata. \mathcal{A} is conjugate to \mathcal{B} if
$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$ This is denoted as $\quad \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

- Conjugacy is a preorder (transitive and reflexive, but not symmetric).
$\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are equivalent.

$$
I E E T=I E E X U=I E X F U
$$

Conjugacy of automata

Definition

Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata. \mathcal{A} is conjugate to \mathcal{B} if
$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$ This is denoted as $\quad \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

- Conjugacy is a preorder (transitive and reflexive, but not symmetric).
- $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B} \quad$ implies that \mathcal{A} and \mathcal{B} are equivalent.

$$
I E E T=I E E X U=I E X F U=I X F F U
$$

Conjugacy of automata

Definition

Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata. \mathcal{A} is conjugate to \mathcal{B} if
$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$
This is denoted as $\mathcal{A} \xrightarrow{X} \mathcal{B}$.

- Conjugacy is a preorder (transitive and reflexive, but not symmetric).
- $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B} \quad$ implies that \mathcal{A} and \mathcal{B} are equivalent.

$$
I E E T=I E E X U=I E X F U=I X F F U=J F F U
$$

Conjugacy of automata

Definition

Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata. \mathcal{A} is conjugate to \mathcal{B} if
$\exists X \quad \mathbb{K}$-matrix $\quad I X=J, \quad E X=X F, \quad$ and $\quad T=X U$ This is denoted as $\quad \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

- Conjugacy is a preorder
(transitive and reflexive, but not symmetric).
- $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B} \quad$ implies that \mathcal{A} and \mathcal{B} are equivalent.

$$
I E E T=I E E X U=I E X F U=I X F F U=J F F U
$$

$$
\text { and then } \quad I E^{*} T=J F^{*} U
$$

Morphisms of weighted automata

Definition
A map $\varphi: Q \rightarrow R$ defines a $(Q \times R)$-amalgamation matrix H_{φ}

$$
\varphi_{2}:\{j, r, s, u\} \rightarrow\{i, q, t\} \quad \text { defines } \quad H_{\varphi_{2}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Morphisms of weighted automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{K}$-automata of dimension Q and R.

A map $\varphi: Q \rightarrow R$ defines an Out-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$
if \mathcal{A} is conjugate to \mathcal{B} by the matrix $H_{\varphi}: \mathcal{A} \xlongequal{H_{\varphi}} \mathcal{B}$

$$
I H_{\varphi}=J, \quad E H_{\varphi}=H_{\varphi} F, \quad T=H_{\varphi} U
$$

\mathcal{B} is a quotient of \mathcal{A}

Morphisms of weighted automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{K}$-automata of dimension Q and R.
A map $\varphi: Q \rightarrow R$ defines an Out-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$
if \mathcal{A} is conjugate to \mathcal{B} by the matrix $H_{\varphi}: \mathcal{A} \xlongequal{H_{\varphi}} \mathcal{B}$

$$
I H_{\varphi}=J, \quad E H_{\varphi}=H_{\varphi} F, \quad T=H_{\varphi} U
$$

\mathcal{B} is a quotient of \mathcal{A}

Directed notion

Morphisms of weighted automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{K}$-automata of dimension Q and R.
A map $\varphi: Q \rightarrow R$ defines an Out-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$
if \mathcal{A} is conjugate to \mathcal{B} by the matrix $H_{\varphi}: \quad \mathcal{A} \xlongequal{H_{\varphi}} \mathcal{B}$

$$
I H_{\varphi}=J, \quad E H_{\varphi}=H_{\varphi} F, \quad T=H_{\varphi} U
$$

\mathcal{B} is a quotient of \mathcal{A}

Directed notion
Price to pay for the weight

Morphisms of weighted automata

Morphisms of weighted automata

Morphisms of weighted automata

$$
\varphi_{2}:\{j, r, s, u\} \rightarrow\{i, q, t\}
$$

Morphisms of weighted automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{K}$-automata of dimension Q and R.
A map $\varphi: Q \rightarrow R$ defines an Out-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$
if \mathcal{A} is conjugate to \mathcal{B} by the matrix $H_{\varphi}: \quad \mathcal{A} \xlongequal{H_{\varphi}} \mathcal{B}$

$$
I H_{\varphi}=J, \quad E H_{\varphi}=H_{\varphi} F, \quad T=H_{\varphi} U
$$

\mathcal{B} is a quotient of \mathcal{A}

Directed notion
Price to pay for the weight

Morphisms of weighted automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{K}$-automata of dimension Q and R.
A map $\varphi: Q \rightarrow R$ defines an In-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$
if \mathcal{A} is conjugate to \mathcal{B} by the matrix $H_{\varphi}: \mathcal{A} \xlongequal{H_{\varphi}} \mathcal{B}$

$$
I H_{\varphi}=J, \quad E H_{\varphi}=H_{\varphi} F, \quad T=H_{\varphi} U
$$

\mathcal{B} is a quotient of \mathcal{A}

Directed notion
Price to pay for the weight

Morphisms of weighted automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{K}$-automata of dimension Q and R.
A map $\varphi: Q \rightarrow R$ defines an In-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$
if \mathcal{B} is conjugate to \mathcal{A} by the matrix ${ }^{\mathrm{t}} \mathrm{H}_{\varphi}: \mathcal{B} \stackrel{\mathrm{t}}{ }{ }^{\mathrm{H}} \boldsymbol{A}$

$$
J{ }^{\mathrm{t}} H_{\varphi}=I, \quad F{ }^{\mathrm{t}} H_{\varphi}={ }^{\mathrm{t}} H_{\varphi} E, \quad U={ }^{\mathrm{t}} H_{\varphi} T
$$

\mathcal{B} is a co-quotient of \mathcal{A}

Directed notion
Price to pay for the weight

Morphisms of weighted automata

$$
\varphi_{2}:\{j, r, s, u\} \rightarrow\{i, q, t\}
$$

$$
H_{\varphi_{2}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Morphisms of weighted automata

Morphisms of weighted automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{K}$-automata of dimension Q and R.
A map $\varphi: Q \rightarrow R$ defines an Out-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$
if \mathcal{A} is conjugate to \mathcal{B} by the matrix $H_{\varphi}: \quad \mathcal{A} \xlongequal{H_{\varphi}} \mathcal{B}$
\mathcal{B} is a quotient of \mathcal{A}

Morphisms of weighted automata

Definition
$\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle \quad \mathbb{K}$-automata of dimension Q and R.
A map $\varphi: Q \rightarrow R$ defines an Out-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$
if \mathcal{A} is conjugate to \mathcal{B} by the matrix $H_{\varphi}: \quad \mathcal{A} \xlongequal{H_{\varphi}} \mathcal{B}$
\mathcal{B} is a quotient of \mathcal{A}

Theorem
Every \mathbb{K}-automaton has a minimal quotient that is effectively computable (by Moore algorithm).

Morphisms of weighted automata

A practical look at conjugacy by H_{φ}

$$
I H_{\varphi}=J, \quad E H_{\varphi}=H_{\varphi} F, \quad \text { and } \quad T=H_{\varphi} U
$$

Morphisms of weighted automata

A practical look at conjugacy by H_{φ}

$$
I H_{\varphi}=J, \quad E H_{\varphi}=H_{\varphi} F, \quad \text { and } \quad T=H_{\varphi} U
$$

- Multiplying E by H_{φ} on the right amounts to add columns

Morphisms of weighted automata

A practical look at conjugacy by H_{φ}

$$
I H_{\varphi}=J, \quad E H_{\varphi}=H_{\varphi} F, \quad \text { and } \quad T=H_{\varphi} U
$$

- Multiplying E by H_{φ} on the right amounts to add columns
- Multiplying F by H_{φ} on the left amounts to duplicate lines

Morphisms of weighted automata

A practical look at conjugacy by H_{φ}

$$
I H_{\varphi}=J, \quad E H_{\varphi}=H_{\varphi} F, \quad \text { and } \quad T=H_{\varphi} U
$$

- Multiplying E by H_{φ} on the right amounts to add columns
- Multiplying F by H_{φ} on the left amounts to duplicate lines
- Merging states p and q realises an Out-morphism if adding columns p and q in E yields a matrix whose lines p and q are equal

Morphisms of weighted automata

A practical look at conjugacy by H_{φ}

$$
I H_{\varphi}=J, \quad E H_{\varphi}=H_{\varphi} F, \quad \text { and } \quad T=H_{\varphi} U
$$

- Multiplying E by H_{φ} on the right amounts to add columns
- Multiplying F by H_{φ} on the left amounts to duplicate lines
- Merging states p and q realises an Out-morphism if adding columns p and q in E yields a matrix whose lines p and q are equal (and if $T_{p}=T_{q}$)

Morphisms of weighted automata

$$
\underbrace{\left(\begin{array}{cccc}
a+b & b & b & b \\
0 & 2 a+2 b & 0 & 2 b \\
0 & 0 & 2 a+2 b & 2 b \\
0 & 0 & 0 & 4 a+4 b
\end{array}\right)}_{R_{2}}\} R_{2}
$$

Morphisms of weighted automata

$$
\underbrace{\left(\begin{array}{cccc}
a+b & b & b & b \\
0 & 2 a+2 b & 0 & 2 b \\
0 & 0 & 2 a+2 b & 2 b \\
0 & 0 & 0 & 4 a+4 b
\end{array}\right)}_{R_{2}}\} R_{2}
$$

$$
\underbrace{\left(\begin{array}{ccc}
a+b & 2 b & b \\
0 & 2 a+2 b & 2 b \\
0 & 2 a+2 b & 2 b \\
0 & 0 & 4 a+4 b
\end{array}\right)}_{Q_{2}}\} R_{2}
$$

Morphisms of weighted automata

$$
\underbrace{\left(\begin{array}{cccc}
a+b & b & b & b \\
0 & 2 a+2 b & 0 & 2 b \\
0 & 0 & 2 a+2 b & 2 b \\
0 & 0 & 0 & 4 a+4 b
\end{array}\right)}_{R_{2}}\} R_{2}
$$

$$
\underbrace{\left(\begin{array}{ccc}
a+b & 2 b & b \\
0 & 2 a+2 b & 2 b \\
0 & 0 & 4 a+4 b
\end{array}\right)}_{Q_{2}}\} Q_{2}
$$

Part III

Recognisability

