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Based on

Chapter III Chapter 4



The presentation is also much inspired by joint works with

Sylvain Lombardy (Univ. Bordeaux)

entitled

� On the equivalence and conjugacy of weighted automata,
CSR 2006,
the journal version is still under prepapration.

� The validity of weighted automata, CIAA 2012 & IJAC 2013.

� Vaucanson 2 (2010–2014),
a platform for computing with weighted automata.



Outline of the tutorial

1. The model

2. Rationality

3. Recognisability



Part I

The model of weighted automata



Outline of Part I

� Models of computation
for computer science anf for the rest of the world

� 1-way Turing machines are equivalent to finite automata

� Once the finite automaton model is well-established,
it is generalised to weighted automata

� Weigthed automata are the linear algebra of computer science
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A touch of general system theory

α(·)y x

y = α(x)

x ∈ Rn , y ∈ Rm

Paradigm of a machine for the rest of the world
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Getting back to computer science

α(·) (u, v) ∈ A∗×B∗B � k

The input belongs to a direct product of free monoids A∗×B∗

The output belongs to the Boolean semiring B



Getting back to computer science

(u, v) ∈ A∗×B∗B � k R

R ⊆ A∗×B∗

The input belongs to a direct product of free monoids A∗×B∗

The output belongs to the Boolean semiring B

The function realised is a relation between words



The simplest Turing machine

p State

Finite control

a1 a2 a3 a4 an $

Direction of movement of the read head

The 1-way 1-tape Turing Machine (1W1TTM)
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The simplest Turing machine is equivalent to finite automata

p q
b

a

b

a

b

B1
L(B1) ⊆ A∗

bab ∈ A∗

−→ p
b−−→p

a−→ p
b−−→ q −→

−→ p
b−−→q

a−→ q
b−−→ q −→

L(B1) = {w ∈ A∗ | w ∈ A∗bA∗} = {w ∈ A∗ | |w |b � 1}



Rational (or regular) languages

Languages accepted (or recognized) by finite automata

=

Languages described by rational (or regular) expressions

=

Languages defined by MSO formulae



Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton (minimal deterministic automaton)



The 1W kT Turing machine

p State

Finite control

a1 a2 a3 a4 an $

k1 k2 k3 k4 kl $

Direction of movement of the k read heads

The 1-way k-tape Turing Machine (1WkTTM)
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The 1W kT Turing machine is equivalent to finite transducers

p q r

1 |a 1 |ab

a |1

b |1

a |ab
b |b a |a b |ba

G1

−→ p
a|1−−→ q

b|1−−−→ r
b|b a−−−→ q

1|a−−→

(abb, baa) ∈ G1

G1 ⊆ A∗×B∗



Features and shortcomings of the finite transducer model

Closure under composition

Closure of Chomsky classes under rational relations

Interesting subclasses of rational relations

Non closure under complement

Undecidable equivalence
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L(B′
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L(B1) = L(B′
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{
w ∈ A∗ ∣∣ |w |b � 1

}
= A∗bA∗
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Counting the number of successful computations

B1 : bab �−→ 2 B′
1 : bab �−→ 1



Automata versus languages

p q
b

a

b

a

b

B1
L(B1) ⊆ A∗

p q
b

a a

b

B′
1

L(B′
1) ⊆ A∗

Counting the number of successful computations

B1 : w �−→ |w |b B′
1 : w �−→ 1
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A new automaton model

w ∈ A∗N � k s

s : A∗ → N s ∈ N〈〈A∗〉〉

s1 = b + ab + b a + 2b b + aab + · · ·+ 2b b a + 3b b b + · · ·

The input belongs to a free monoid A∗

The output belongs to the integer semiring N

The function realised is a function from A∗ to N

we call it a series
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� Weight of a path c : product of the weights of transitions in c

� Weight of a word w : sum of the weights of paths with label w.
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The weighted automaton model

p q
b

a

b

2a

2b

C1

1−−→ p
b−−→p

a−−→ p
b−−→ q

1−−→
1−−→ p

b−−→q
2 a−−−→ q

2 b−−−→ q
1−−→

� Weight of a path c : product of the weights of transitions in c

� Weight of a word w : sum of the weights of paths with label w.

b ab �−→ 1 + 4 = 5 = 〈101〉2
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The weighted automaton model

p q
b

a

b

2a

2b

C1 C1 ∈ N〈〈A∗〉〉

1−−→ p
b−−→p

a−−→ p
b−−→ q

1−−→
1−−→ p

b−−→q
2 a−−−→ q

2 b−−−→ q
1−−→

� Weight of a path c : product of the weights of transitions in c

� Weight of a word w : sum of the weights of paths with label w.

C1 = b + ab + 2b a + 3b b + aab + 2ab a + · · ·+ 5b ab + · · ·



The weighted automaton model (2)

p q
0 0

0a

1b

1a

0b

L1
L1 ∈ Zmin〈〈A∗〉〉

0−−→ p
1 b−−−→p

0 a−−−→ p
1 b−−−→ p

0−−→
0−−→ q

0 b−−−→q
1 a−−−→ q

0b−−−→ q
0−−→

� Weight of a path c :
product, that is, the sum, of the weights of transitions in c

� Weight of a word w :
sum, that is, the min of the weights of paths with label w

bab �−→ min(1 + 0 + 1, 0 + 1 + 0) = 1 L1 : A
∗ −→ Zmin



The weighted automaton model (2)

p q
0 0

0a

1b

1a

0b

L1
L1 ∈ Zmin〈〈A∗〉〉

0−−→ p
1 b−−−→p

0 a−−−→ p
1 b−−−→ p

0−−→
0−−→ q

0 b−−−→q
1 a−−−→ q

0b−−−→ q
0−−→

� Weight of a path c :
product, that is, the sum, of the weights of transitions in c

� Weight of a word w :
sum, that is, the min of the weights of paths with label w

C1 = 01A∗ + 0a + 0b + 1ab + 1b a + 0b b + · · · + 1b ab + · · ·



The weighted automaton model (system theory mode)

w ∈ A∗K � k s

s : A∗ → K s ∈ K〈〈A∗〉〉

The input belongs to a free monoid A∗

The output belongs to a semiring K

The function realised is a function from A∗ to K: a series in K〈〈A∗〉〉



The weighted automaton model (sytem theory mode)

(u, v) ∈ A∗×B∗K � k s

s : A∗×B∗ → K s ∈ K〈〈A∗×B∗〉〉

The input belongs to a direct product of free monoids A∗×B∗

The output belongs to a semiring K

The function realised is a function from A∗×B∗ to K:
a series in K〈〈A∗×B∗〉〉



Richness of the model of weighted automata

� B ‘classic’ automata

� N ‘usual’ counting

� Z , Q , R numerical multiplicity

� 〈Z ∪ +∞,min,+ 〉 Min-plus automata

� 〈Z,min,max 〉 fuzzy automata

� P (B∗) = B〈〈B∗〉〉 transducers

� N〈〈B∗〉〉 weighted transducers

� P (F (B)) pushdown automata



Series play the role of languages

K〈〈A∗〉〉 plays the role of P (A∗)



Series play the role of relations

K〈〈A∗×B∗〉〉 plays the role of P (A∗×B∗)



Weighted automata theory

is the linear algebra

of computer science



Part II

Rationality



Outline of Part II

� Definition of rational series

� The Fundamental Theorem of Finite Automata
What can be computed by a finite automaton

is exactly what can be computed by the star operation
(together with the algebra operations)

� Morphisms of weighted automata



The semiring K〈〈A∗〉〉

K semiring A∗ free monoid

s ∈ K〈〈A∗〉〉 s : A∗ → K s : w �−→ 〈s,w 〉

s =
∑
w∈A∗

〈s,w 〉w

Point-wise addition 〈s + t,w 〉 = 〈s,w 〉+ 〈t,w 〉
Cauchy product 〈s t,w 〉 =

∑
u v=w

〈s, u〉 〈t, v 〉

{(u, v) | u v = w} finite =⇒ Cauchy product well-defined

K〈〈A∗〉〉 is a semiring



The semiring K〈〈M〉〉

K semiring M monoid

s ∈ K〈〈M〉〉 s : M → K s : m �−→ 〈s,m〉

s =
∑
m∈M

〈s,m〉m

Point-wise addition 〈s + t,m〉 = 〈s,m〉+ 〈t,m〉
Cauchy product 〈s t,m〉 =

∑
x y=m

〈s, x 〉 〈t, y 〉

∀m {(x , y) | x y = m} finite =⇒ Cauchy product well-defined



The semiring K〈〈M〉〉

Conditions for {(x , y) | x y = m} finite for all m

Definition
M is graded if M equipped with a length function ϕ

ϕ : M → N ϕ(mm′) = ϕ(m) + ϕ(m′)

M f.g. and graded =⇒ K〈〈M〉〉 is a semiring

Examples

M trace monoid, then K〈〈M〉〉 is a semiring

K〈〈A∗×B∗〉〉 is a semiring

F (A) , the free group on A , is not graded



The algebra K〈〈M〉〉

K semiring M f.g. graded monoid

s ∈ K〈〈A∗〉〉 s : M → K s : m �−→ 〈s,m〉

s =
∑
m∈M

〈s,m〉m

Point-wise addition 〈s + t,m〉 = 〈s,m〉+ 〈t,m〉
Cauchy product 〈s t,m〉 =

∑
x y=m

〈s, x 〉 〈t, y 〉

External multiplication 〈k s,m〉 = k 〈s,m〉

K〈〈M〉〉 is an algebra



The star operation

t ∈ K t∗ =
∑
n∈N

tn

How to define infinite sums ?

One possible solution

Topology on K

Definition of summable families and of their sum

t∗ defined if {tn}n∈N summable

Other possible solutions

axiomatic definition of star, equational definition of star



The star operation

t ∈ K t∗ =
∑
n∈N

tn



The star operation

t ∈ K t∗ =
∑
n∈N

tn

� ∀K (0K)
∗ = 1K

� K = N ∀x �= 0 x∗ not defined.

� K = N = N ∪ {+∞} ∀x �= 0 x∗ = ∞ .

� K = Q (12)
∗ = 2 with the natural topology,

(12 )
∗ is undefined with the discrete topology.



The star operation

t ∈ K t∗ =
∑
n∈N

tn

In any case

t∗ = 1K + t t∗

Star has the same flavor as the inverse

If K is a ring

t∗ (1K − t) = 1K

1K
1K − t

= 1K + t + t2 + · · ·+ tn + · · ·



Star of series

s ∈ K〈〈A∗〉〉 When is s∗ =
∑
n∈N

sn defined ?



Star of series

s ∈ K〈〈A∗〉〉 When is s∗ =
∑
n∈N

sn defined ?

Topology on K yields topology on K〈〈A∗〉〉
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Topology on K given by a distance c c : K×K → R+
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• symmetry: c(x , y) = c(y , x)

• positivity: c(x , y) > 0 if x �= y and c(x , x) = 0

• triangular inequality: c(x , y) � c(x , z) + c(y , z)
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The simple convergence topology on K〈〈A∗〉〉

Topology on K given by a distance c c : K×K → R+

• symmetry: c(x , y) = c(y , x)

• positivity: c(x , y) > 0 if x �= y and c(x , x) = 0

• triangular inequality: c(x , y) � c(x , z) + c(y , z)

A sequence {kn}n∈N of elements of K converges toward k

k = limn→+∞kn ∀ε > 0 ∃N ∈ N ∀n � N c(kn, k) � ε

Remark
Always assume c(x , y) � 1

Remark
Discrete topology x �= y ⇒ c(x , y) = 1
Converging sequences = stationnary sequences



The simple convergence topology on K〈〈A∗〉〉

� B, N, Z, discrete topology

� M = 〈N,min,+ 〉 discrete topology

� Q, Q+, R, R+ “natural distance”



The simple convergence topology on K〈〈A∗〉〉

Definition
{sn}n∈N, sn ∈ K〈〈A∗〉〉, converges toward s iff

∀w ∈ A∗ 〈sn,w 〉 converges toward 〈s,w 〉 in K.
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The simple convergence topology on K〈〈A∗〉〉

Definition
{sn}n∈N, sn ∈ K〈〈A∗〉〉, converges toward s iff

∀w ∈ A∗ 〈sn,w 〉 converges toward 〈s,w 〉 in K.

The simple convergence topology on K〈〈A∗〉〉
is defined by a distance d :

If K is equipped with the discrete topology:

e(s, t) = min {n ∈ N | ∃w ∈ A∗ |w | = n and 〈s,w 〉 �= 〈t,w 〉} ,

d(s, t) = 2−e(s,t)



The simple convergence topology on K〈〈A∗〉〉

Definition
{sn}n∈N, sn ∈ K〈〈A∗〉〉, converges toward s iff

∀w ∈ A∗ 〈sn,w 〉 converges toward 〈s,w 〉 in K.

The simple convergence topology on K〈〈A∗〉〉
is defined by a distance d :

If K is equipped with the topology defined by the distance c:

d(s, t) =
1

2

∑
n∈N

(
1

2n
max {c(〈s,w 〉, 〈t,w 〉) | |w | = n}

)
.



The simple convergence topology on K〈〈A∗〉〉

Proposition

If K is a topological semiring,
then K〈〈A∗〉〉, equipped with the simple convergence topology,

is a topological semiring.
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The simple convergence topology on K〈〈A∗〉〉

Proposition

If K is a topological semiring,
then K〈〈A∗〉〉, equipped with the simple convergence topology,

is a topological semiring.

Definition
Summable family of series.

Definition
Locally finite family of series.



The simple convergence topology on K〈〈A∗〉〉

Proposition

If K is a topological semiring,
then K〈〈A∗〉〉, equipped with the simple convergence topology,

is a topological semiring.

Definition
Summable family of series.

Definition
Locally finite family of series.

Proposition

A locally finite family of series is summable.
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Star of series

s ∈ K〈〈A∗〉〉 When is s∗ =
∑
n∈N

sn defined ?

Topology on K yields topology on K〈〈A∗〉〉

s proper s0 = 〈s, 1A∗ 〉 = 0K

s proper =⇒ s∗ defined

∀s ∈ K〈〈A∗〉〉 s = s0 + sp with sp proper

Definition
K strong product of two summable families summable.

Proposition

K strong, s ∈ K〈〈A∗〉〉 s∗ is defined iff s∗0 is defined

s∗ = (s∗0 sp)
∗s∗0 = s∗0 (sp s

∗
0 )

∗



Rational series

K〈A∗〉 ⊆ K〈〈A∗〉〉 subalgebra of polynomials

KRatA∗ closure of K〈A∗〉 under

� sum

� product

� exterior multiplication

� and star

KRatA∗ ⊆ K〈〈A∗〉〉 subalgebra of rational series



Fundamental theorem of finite automata
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Fundamental theorem of finite automata

Theorem

s ∈ KRatA∗ ⇐⇒ ∃A ∈ KWA(A∗) s = |||A|||

Kleene theorem ?

Theorem

M finitely generated graded monoid

s ∈ KRatM ⇐⇒ ∃A ∈ KWA(M) s = |||A|||



Fundamental theorem of finite automata

KRatA∗ KRatEA∗ KWA(A∗)
standard

elimination
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Standard automaton

E1 = (1
6
a∗ + 1

3
b∗)∗

1

2

2

2

1
3 a

2
3 b

1
3 a

2
3 b

4
3 a

5
3 b



Automata are matrices

� Automata are (essentially) matrices: A = 〈 I ,E ,T 〉

� Computing the behaviour of an automaton boils down
to solving a linear system X = E · X + T (s)

� Solving the linear system (s) amounts to invert
the matrix (Id − E ) (hence the name rational)

� The inversion of Id − E is realised by
an infinite sum Id + E + E 2 + E 3 + · · · : the star of E



Automata are matrices

p q
b

a

b

2a

2b

C1

C1 = 〈 I1,E1,T1 〉 =
〈(

1 0
)
,

(
a+ b b
0 2a + 2b

)
,

(
0
1

)〉
.
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Automata are matrices

A = 〈 I ,E ,T 〉 E = incidence matrix

Notation

wl(x) = weighted label of x

In our model, e transition ⇒ wl(e) = k a

Ep,q =
∑

{wl(e) | e transition from p to q}

Lemma

Enp,q =
∑

{wl(c) | c computation from p to q of length n}
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Automata are matrices

A = 〈 I ,E ,T 〉 E = incidence matrix

Ep,q =
∑

{wl(e) | e transition from p to q}

E ∗ =
∑
n∈N

E n

E ∗
p,q =

∑
{wl(c) | c computation from p to q}



Automata are matrices

A = 〈 I ,E ,T 〉 E = incidence matrix

Ep,q =
∑

{wl(e) | e transition from p to q}

E ∗ =
∑
n∈N

E n

E ∗
p,q =

∑
{wl(c) | c computation from p to q}

A = I · E ∗ · T



Automata are matrices

K semiring M graded monoid

K〈〈M〉〉Q×Q is isomorphic to KQ×Q〈〈M〉〉

E ∈ K〈〈M〉〉Q×Q E proper =⇒ E ∗ defined
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K semiring M graded monoid
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Theorem
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Fundamental theorem of finite automata

K semiring M graded monoid

K〈〈M〉〉Q×Q is isomorphic to KQ×Q〈〈M〉〉

E ∈ K〈〈M〉〉Q×Q E proper =⇒ E ∗ defined

Theorem
The entries of E ∗ are

in the rational closure of the entries of E

Theorem
The family of behaviours of weighted automata over M

with coefficients in K is rationally closed.



The collect theorem

K〈〈A∗×B∗〉〉 is isomorphic to [K〈〈B∗〉〉] 〈〈A∗〉〉

Theorem

Under the above isomorphism,

KRatA∗×B∗ corresponds to [KRatB∗]RatA∗
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Morphisms of automata

1. Automata are structures.

What are the morphisms for those structures?

2. Automata realise series

Can we find an equivalent smaller automaton?
of minimal size?

that respects the structure?



Morphisms of Boolean automata

Minimisation of deterministic automata

a b
a

bb

a

b

a

a b

b

a

b

a



Morphisms of Boolean automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 B-automata

of dimension Q and R

A map ϕ : Q → R defines a morphism ϕ : A → B if

(p, a, q) ∈ E =⇒ (ϕ(p), a, ϕ(q)) ∈ F
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Morphisms of Boolean automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 B-automata

of dimension Q and R

A map ϕ : Q → R defines a morphism ϕ : A → B if

(p, a, q) ∈ E =⇒ (ϕ(p), a, ϕ(q)) ∈ F

� The image of a path is a path

� The image of a successful path is a successful path

� The label of the image of a path is the label of the path

A ⊆ B
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Morphisms of Boolean automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 B-automata

of dimension Q and R

A map ϕ : Q → R defines a morphism ϕ : A → B if

(p, a, q) ∈ E =⇒ (ϕ(p), a, ϕ(q)) ∈ F

Problem:
Find conditions such that A = B
Solution:

Local conditions

Problem:
Neither the definition, nor the solution, extend directly to B-automata
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Definition
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Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .



Conjugacy of automata

X1 =



1 0 0 0
0 −1 1 0
0 1 1 0
0 0 0 1


 .

a

−2a

b

2bA1

−a

b

−a

b

a
b

a
b B1

A1
X1=⇒ B1



Conjugacy of automata

A′ 1z

2z


1 0
0 1
0 2




⇐= C′21z 1z

2z

C′ =
〈(

1 0 0
)
,


0 z 0
0 0 z
0 0 2z


,


0
1
2



〉

A′ =
〈(

1 0
)
,
(
0 z
0 2z

)
,
(
0
1

)〉

(
1 0 0

) ·

1 0
0 1
0 2


 =

(
1 0

)
,


0 z 0
0 0 z
0 0 2z


 ·


1 0
0 1
0 2


 =


1 0
0 1
0 2


 ·

(
0 z
0 2z

)
,


0
1
2


 =


1 0
0 1
0 2


 ·

(
0
1

)
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Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

• Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

• A X
=⇒ B implies that A and B are equivalent.
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Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

• Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

• A X
=⇒ B implies that A and B are equivalent.

I E E T = I E E X U = I E X F U = I X F F U = J F F U

and then I E ∗T = J F ∗U



Morphisms of weighted automata

Definition
A map ϕ : Q → R defines a (Q×R)-amalgamation matrix Hϕ

ϕ2 : {j , r , s, u} → {i , q, t} defines Hϕ2 =



1 0 0
0 1 0
0 1 0
0 0 1
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Morphisms of weighted automata

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b



Morphisms of weighted automata

ϕ2 : {j , r , s, u} → {i , q, t}

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Hϕ2 =



1 0 0
0 1 0
0 1 0
0 0 1






Morphisms of weighted automata

ϕ2 : {j , r , s, u} → {i , q, t}

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Hϕ2 =



1 0 0
0 1 0
0 1 0
0 0 1




i q t

V2

2b 2b

b
a

b

2a

2b

4a

4b

C2
Hϕ2=⇒ V2
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A map ϕ : Q → R defines an In-morphism ϕ : A → B
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I Hϕ = J, E Hϕ = Hϕ F , T = HϕU
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Morphisms of weighted automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an In-morphism ϕ : A → B
if B is conjugate to A by the matrix tHϕ : B

tHϕ
=⇒ A

J tHϕ = I , F tHϕ = tHϕ E , U = tHϕ T

B is a co-quotient of A

Directed notion Price to pay for the weight



Morphisms of weighted automata

ϕ2 : {j , r , s, u} → {i , q, t}

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Hϕ2 =



1 0 0
0 1 0
0 1 0
0 0 1




i q t

V ′
2

b 4b

b
a

b

2a

2b

4a

4b

V ′
2

tHϕ2=⇒ C2



Morphisms of weighted automata

ϕ2 : {j , r , s, u} → {i , q, t}

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Hϕ2 =



1 0 0
0 1 0
0 1 0
0 0 1




i q t

V2

2b 2b

b
a

b

2a

2b

4a

4b

i q t

V ′
2

b 4b

b
a

b

2a

2b

4a

4b

C2
Hϕ2=⇒ V2 V ′

2

tHϕ2=⇒ C2



Morphisms of weighted automata
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A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an Out-morphism ϕ : A → B
if A is conjugate to B by the matrix Hϕ : A Hϕ

=⇒ B
B is a quotient of A



Morphisms of weighted automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an Out-morphism ϕ : A → B
if A is conjugate to B by the matrix Hϕ : A Hϕ

=⇒ B
B is a quotient of A

Theorem
Every K-automaton has a minimal quotient

that is effectively computable (by Moore algorithm).
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Morphisms of weighted automata

A practical look at conjugacy by Hϕ

I Hϕ = J , E Hϕ = HϕF , and T = HϕU

� Multiplying E by Hϕ on the right amounts to add columns

� Multiplying F by Hϕ on the left amounts to duplicate lines

� Merging states p and q realises an Out-morphism if

adding columns p and q in E yields
a matrix whose lines p and q are equal

(and if Tp = Tq )



Morphisms of weighted automata



a+ b b b b
0 2a + 2b 0 2b
0 0 2a + 2b 2b
0 0 0 4a + 4b





R2

︸ ︷︷ ︸
R2
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a+ b b b b
0 2a + 2b 0 2b
0 0 2a + 2b 2b
0 0 0 4a + 4b
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a + b 2b b
0 2a + 2b 2b
0 2a + 2b 2b
0 0 4a + 4b
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Q2



Morphisms of weighted automata



a+ b b b b
0 2a + 2b 0 2b
0 0 2a + 2b 2b
0 0 0 4a + 4b





R2

︸ ︷︷ ︸
R2


a + b 2b b

0 2a + 2b 2b
0 0 4a + 4b





Q2

︸ ︷︷ ︸
Q2



Part III

Recognisability


