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1 Introduction

Weighted automata realise power series — in contrast to ‘classical’ automata
which accept languages. There are many good reasons that make power series
worth interest compared to languages, beyond the raw appeal to generalisation
that inhabits every mathematician.

First, power series provide a more powerful mean for modelisation, replac-
ing a pure acceptance/rejection mode by a quantification process. Second, by
putting automata theory in a seemingly more complicated framework, one
benefits from the strength of mathematical structures thus involved and some
results and constructions become simpler, both conceptually, and on the com-
plexity level. Let us also mention, as a third example, that in the beginning
of the theory weighted automata were probably considered for their ability of
defining languages — via the supports of realised power series — rather than
for the power series themselves. In all these instance, what matters is that the
choice of the semiring K of multiplicity be as wide as possible and our first
aim is to develop as far as possible a theory with a priori no assumption at
all on K.

With this in mind, I have chosen as the main thread of this chapter to
lay comprehensive bases for the proof of the decidability of the equivalence of
deterministic k-tape transducers which is, at least in my opinion, one of the
most striking examples of the application of algebra to “machine theory”. To
that end, I develop in particular the following points.
(a) The definition of rational series over graded monoids (in order to deal
with direct product of free monoids) and not over free monoids only. A side
benefit of the definition of series over arbitrary (graded) monoids is that it
makes clearer the distinction between the rational and the recognisable series.
(b) The reduction theory of series over a free monoid and with coefficients
in a (skew) fields, that leads to a procedure for the decidability of equivalence
(with a cubic complexity).
(c) As it is natural for series with coefficients in a field, and since the topo-
logical machinery is set anyway, the star of series is defined in a slightly more
general setting than cycle-free series
(d) The basics for rational relations with multiplicity, for the weighted gen-
eralisation of the often called Kleene–Schützenberger Theorem on transducers
as well as of the Myhill Theorem (on recognisable sets in a product of monoids)
or of McKnight Theorem (on the inclusion of recognisable set in rational ones
in finitely generated monoids).

The core of this chapter pertains to a now classical part of automata theory,
originating in the seminal paper of M. P. Schützenberger ([44]) and having
been exposed in several treatises already quoted at Chapter 1: Eilenberg [14],
Salomaa and Soittola [43], Berstel and Reutenauer [5], Kuich and Salomaa
[28]. I have not resisted though to include also some more recent developments
which are the result of my own work with my colleagues M.-P. Béal and
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S. Lombardy : the derivation of weighted expressions [31], and the connection
between conjugacy and equivalence, [3, 4, 2].

The presentation given here (but for the last quoted result that is too
recent) is borrowed from Chapter III of my book Elements of Automata The-
ory [41], where missing proofs, detailled examples and further developments
can be found. I am grateful to Reuben Thomas who has translated this book
from French and to Cambridge University Press for allowing me to use the
material for this chapter. Finally, I want to acknowledge the always inspiring
discussions I have had in the last ten years with Sylvain Lombardy.

2 Rational series and weighted rational expressions

In the preceeding chapters, the formal power series that have been considered
are series over a free monoid with coefficients in a semiring K that is almost
always supposed to be complete or continuous, openning the way to straight-
forward generalisations of results and methods developped for languages that
are series with multiplicity in the Boolean semiring, and classical automata.

Our first purpose is to build a theory where no assumptions are made
on the semiring of coefficients, and as few as possible on the base monoid.
There will be some redundancy with Chapters 1 and 3, but I have prefered
to write a comprehensive text that naturally flows rather than to interrupt
it with references to results that are always stated under slightly different
hypotheses.

In what follows, M is a monoid and K a semiring, a priori arbitrary.

2.1 Series over a graded monoid

For any set E, the set of maps from E to K is usually written KE and canon-
ically inherits from K a structure of semiring when equipped with pointwise
addition and multiplication. When E is a monoid M , we equip KM with an-
other multiplication which derives from the monoid structure of M and we
thus use different notation and terminology for these maps together with this
other semiring structure — indeed the ones set up at Chap. 1, Sec. 3.

Any map from M to K is a formal power series over M with coefficients
in K — abbreviated as K-series over M , or even as series if there is ambiguity
neither on K nor on M . The set of these series is written K〈〈M〉〉 . If s is a
series, the image of an element m of M under s is written <s, m> rather than
(m)s and is called the coefficient of m in s.

The support of a series s is the subset of elements of M whose coeffi-
cient in s is not 0K. A series with finite support is a polynomial ; the set of
polynomials over M with coefficients in K is written K〈M〉.

For all s and t, and all k in K, the following operations on K〈〈M〉〉 are
defined:
(i) the (left and right) ‘exterior’ multiplications:
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k s and sk by ∀m ∈ M <ks, m> = k<s, m> and <sk, m> = <s, m>k

(ii) the pointwise addition:

s + t by ∀m ∈ M <s + t, m> = <s, m> + <t, m>

(iii) and the Cauchy product :

st by ∀m ∈ M <st, m> =
∑

u,v∈M
uv=m

<s, u><t, v> (∗)

Addition makes K〈〈M〉〉 a commutative monoid, whatever K and M ; to-
gether with the two exterior multiplications, it makes K〈〈M〉〉 a left and right
module on K.

The Cauchy product raises a problem for there could very well exist ele-
ments m in M such that the set of pairs (u, v) satisfying uv = m is infinite,
and hence there could exist series such that the sum on the right hand side
of (∗) is not defined. Thus, we cannot ensure, without further assumptions,
that the Cauchy product is a binary operation totaly defined on K〈〈M〉〉. This
difficulty can be overcome in at least three ways.

The first is to retreat: we no longer consider K〈〈M〉〉 but only the set K〈M〉
of polynomials. If s and t are polynomials, the sum in (∗) is infinite but only a
finite number of terms are non-zero; the Cauchy product is defined on K〈M〉
and makes it indeed a semiring (a semialgebra on K), a sub-semiring of K〈〈M〉〉
when that is defined.

The second is to assume that K is complete: every sum, even if infinite, is
defined on K, and the Cauchy product of two series is defined for any M .
This is the case, for example, if K is equal to B, B〈〈M〉〉, 〈N∞, +, · 〉 or
〈N∞, min, + 〉 . The theory of finite automata over a free monoid and with
multiplicity in a complete semiring has been developped in Chap. 3.

The third way, which is ours, aims at being able to define weighted au-
tomata, and hence series, without restriction on K, and we are led in this case
to make assumptions about M : we suppose for the rest of this chapter that the
monoids are graded, a condition that we shall describe in the next paragraph
and which allows the natural generalisation of the standard construction of
formal power series of a single variable.1

2.1.1 Graded monoid

For the Cauchy product to be always defined on K〈〈M〉〉, independently of K,
it is necessary (and sufficient) that, for all m in M , the set of pairs (u, v) such

1 A fourth method exists, that takes out of both the first and the third. It involves
making an assumption about M (we require it to be an ordered group) and con-
sidering only a subset of K〈〈M〉〉 (those series whose support is well ordered). A
reference to that set of series will be made at Section 5.3.
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that uv = m is finite – we will say that m is finitely decomposable. However,
making K〈〈M〉〉 a semiring is not an end in itself: the development of the theory
to come is the characterisation of the behaviour of finite automata by means
of rational operations — a fundamental theorem — and then not only must
sum and product be defined on the series, but so must the star operation,
which implies an infinite sum. This forces us to have some sort of topology
on K〈〈M〉〉, to which we shall return in the next paragraph.

The construction of series on A∗, which generalises that of series of one
variable, shows that it is from the length of words in A∗ that we build a topol-
ogy on K〈〈A∗〉〉 . The existence of an additive length is the main assumption
that we shall make about M . Returning to the initial problem, we then seek
an additional condition that ensures that every element is finitely decompos-
able. For reasons of simplicity we assume that M is finitely generated. This
solves the problem, while allowing us to deal with the cases that interest us.

Definition 1. A function ϕ : M → N is a length on M if:
(i) ϕ(m) is strictly positive for all m other than 1M ;
(ii) ∀m, n ∈ M ϕ(mn) � ϕ(m) + ϕ(n) .
We shall say that a length is a gradation if it is additive; that is, if:

(iii) ∀m, n ∈ M ϕ(mn) = ϕ(m) + ϕ(n) ;
and that M is graded if it is equipped with a gradation.

Every free monoid and every cartesian product of free monoids is graded.
The definition implies that ϕ(1M ) = 0 and that a finite monoid, more gen-
erally a monoid that contains an idempotent other than the identity (for
example, a zero), cannot be equipped with a gradation.

Proposition 1. In a graded monoid of finite type, the number of elements
whose length is less than an arbitrary given integer n is finite. ��

In other words, every element of a graded monoid M can only be written
in a finite number of different ways as the product of elements of M other
than 1M . We can deduce in particular:

Corollary 1. In a graded monoid of finite type, every element is finitely de-
composable. ��
Corollary 2. A graded monoid of finite type is countable. ��

Note that a finite monoid is not graded, but that every element in it is
nonetheless finitely decomposable. From Corollary 1, we deduce the proposi-
tion aimed at by Definition 1:

Proposition 2. Let M be a graded monoid of finite type and K a semiring.
Then K〈〈M〉〉, equipped with the Cauchy product, is a semiring and, what is
more, a (left and right) algebra2 on K. ��
2 If K is a ring, K〈〈M〉〉 is even what is classically called a graded algebra, which is

the origin of the terminology chosen for graded monoids.
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In the following, M is a graded monoid that is implicitly assumed to be
of finite type. To simplify the notation and in imitation of the free monoid,
we will write the length function as a pair of vertical bars, that is, |m| rather
than ϕ(m).

From the semiring K〈〈M〉〉, one then builds other semirings, by means of
classical constructions; let us quote in particular and for further reference the
following fundamental isomorphism.

Lemma 1. Let K be a semiring, M a graded monoid, and Q a finite set;
then the set of square matrices of dimension Q and with entries in the semir-
ing K〈〈M〉〉 is a semiring, isomorphic to that of series over M with coefficient
in the semiring of square matrices of dimension Q and with entries in K; that
is, K〈〈M〉〉Q×Q ∼= KQ×Q〈〈M〉〉 . ��

2.1.2 Topology on K〈〈M〉〉
The definition to come of the star operation, an infinite sum, calls for the
definition of a topology on K〈〈M〉〉.

Since K〈〈M〉〉 = KM is the set of maps from M to K, it is naturally
equipped with the product topology of the topology on K. If this topology
on K is defined by a distance, the product topology on K〈〈M〉〉 coincides,
as M is countable, with the simple convergence topology:

sn converges to s if, and only if,
for all m in M , <sn, m> converges to <s, m> .

We shall reexamine the topology question using only the notion of distance,
more in line with intuition and explain how to define a distance between two
series under the assumption that M is graded. The foregoing reference to
simple convergence topology was nevertheless worthwhile, as it made clear
that the basis of the topology on K〈〈M〉〉 is the topology on K.

Distance on K〈〈M〉〉

A distance on a set E is a map d which relates to every pair (x, y) of ele-
ments of E a positive real number d(x, y), called the distance from x to y (or
between x and y), which satisfies the following properties:

• symmetry: d(x, y) = d(y, x)
• positivity: d(x, y) > 0 if x 
= y and d(x, x) = 0
• triangular inequality: d(x, y) � d(x, z) + d(y, z)

When this triangular inequality can be replaced by

• ∀x, y, z ∈ E d(x, y) � max{d(x, z),d(y, z)} ,
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the distance d is called ultrametric.
A sequence {xn}n∈N of elements of E converges to x if the distance be-

tween xn and x becomes arbitrarily small as n grows; that is, more formally,

∀ε > 0 ∃N ∈ N ∀n � N d(xn, x) � ε .

Such an element x is unique; it is called the limit of the series {xn}n∈N and
we write x = limn→+∞xn , or simply x = limxn if there is no ambiguity. We
say that d equips E with a topology.

Remark 1. We can always assume that a distance is a real number less than
or equal to 1. If that is not the case, then by taking

f(x, y) = inf{d(x, y), 1} ,

we obtain a distance f on E that defines the same topology; that is, a distance
for which the same sequences will converge to the same limits.

Remark 2. Whatever E is, we can choose a trivial distance function which
is 1 for every pair of distinct elements. This is equivalent to saying that two
distinct elements are never ‘close’ to each other, and that the only convergent
sequences are those that are stationary from a certain rank on. We then say
that E is equipped with the discrete topology.

We are confronted with two situations which seem fundamentally different.
The first is that of a semiring K such as B, N, Z, N∞, etc., whose elements
are ‘detached’ from each other. The natural topology on these semirings is
the discrete topology. The second is that of semirings such as Q, Q+, R, etc.,
or even, later, K〈〈M〉〉 itself which can act as a semiring of coefficients for
power series on another monoid; that is, semirings on which there is a priori
a distance which can be arbitrarily small. On these semirings as well we can
choose a discrete topology, but it is more satisfactory to preserve their ‘native’
topology. By means of the definition of a distance and the topological notions
derived from it, we treat in the same way these two situations.

We first assume that K is equipped with a distance c which is bounded
by 1. The length function on M allows us to put an ordering on the elements
of M and we set

d(s, t) =
1
2

∑
n∈N

(
1
2n

max{c(<s, m>, <t, m>)
∣∣ |m| = n}

)
.

We then verify that d is indeed a distance on K〈〈M〉〉, ultrametric when c
is, and that the topology defined on K〈〈M〉〉 by d is, as stated, the simple
convergence topology; that is:

Property 1. A sequence {sn}n∈N of series of K〈〈M〉〉 converges to s if, and only
if, for all m in M <sn, m> converges to <s, m>.
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Rational and recognisable series 9

Furthermore, choosing a topology on a semiring only really makes sense
if the constituent operations of the semiring, addition and multiplication, are
consistent with the topology – we say they are continuous – that is, if the
limit of a sum (resp. of a product) is the sum (resp. the product) of the limits.
We say in this case that not only is the semiring equipped with a topology,
but that it is a topological semiring. We easily verify that if K is topological,
then so is K〈〈M〉〉. In other words, if {sn}n∈N and {tn}n∈N are two convergent
sequences of elements of K〈〈M〉〉, we have

lim(sn + tn) = (limsn) + (lim tn) and lim(sntn) = (limsn) (lim tn) .

Note that conversely the fact that the sequence {sn + tn}n∈N or {sn tn}n∈N

converges says nothing about whether {sn}n∈N or {tn}n∈N converges or not.
If K is a topological semiring, then so is KQ×Q and the isomorphism quoted

at Lemma 1 is moreover a bi-continuous bijection.

Summable families

Let T be a semiring3 equipped with a distance which makes it a topo-
logical semiring. We thus know precisely what means that an infinite se-
quence {tn}n∈N converges to a limit t when n tends to infinity. We must
now give an equally precise meaning to the sum of an infinite family {ti}i∈I

and it turns out to be somewhat harder. The difficulty arises from the fact
that we want a sort of associativity–commutativity extended ‘to infinity’ and
hence ensure that the result and its existence does not depend on an arbitrary
order existing on the set I of indices.

We shall therefore define an ‘absolute’ method of summability, and a family
will be described as ‘summable’ if we can find an increasing sequence of finite
sets of indices, a sort of ‘kernels’, such that not only do partial sums on these
sets tend to a limit but above all that any sum on a finite set containing one
of these kernels stays close to this limit. More precisely:

Definition 2. A family {ti}i∈I of elements of T indexed by an arbitrary set I
is called summable if there exists t in T such that, for all positive ε, there exists
a finite subset Jε of I such that, for all finite subsets L of I which contain Jε,
the distance between t and the sum of {ti} for i in L is less than ε; that is:

∃t ∈ T , ∀ε > 0 , ∃Jε finite , Jε ⊂ I , ∀L finite , Jε ⊆ L ⊂ I d

(∑
i∈L

ti, t

)
� ε.

The element t thus defined is unique and is called the sum of the fam-
ily {ti}i∈I .

3 We have temporarily changed the symbol we use for a semiring on purpose: T

will not only play the role of K but also of K〈〈M〉〉 in what follows.
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10 Jacques Sakarovitch

The sum just defined is obviously equal to the usual sum if I is finite, and
we write

t =
∑
i∈I

ti .

From the definition of a summable family we easily deduce an associativity
property restricted to finite groupings, but that repeat infinitely:

Property 2. Let {ti}i∈I be a summable family with sum t in T. Let K be a
set of indices and {Jk}k∈K a partition of I where all the Jk are finite (that
is, I =

⋃
k∈K Jk and the Jk are pairwise disjoint). Set sk =

∑
i∈Jk

ti . Then
the family {sk}k∈K is summable with sum t. ��

As in the preceeding chapters, we say that a family of series {si}i∈I is
locally finite if for all m in M there is only a finite number of indices i such
that <si, m> is different from 0K.

Property 3. A locally finite family of power series is summable. ��
This simple property is a good example of what the topological structure

placed on K〈〈M〉〉 imposes and adds. That we can define a sum for a locally
finite family of series is trivial: pointwise addition is defined for each m, inde-
pendently of any assumption about M . To say that the family is summable is
to add extra information: it ensures that partial sums converge to the result
of pointwise addition.

For all series s, the family of series {<s, m>m
∣∣ m ∈ M} , where m is

identified with its characteristic series, is locally finite, and we have

s =
∑

m∈M

<s, m>m ,

which is the usual notation that is thus justified. We also deduce from this
notation that K〈M〉 is dense in K〈〈M〉〉. Property 3 extends beyond locally
finite families and generalises to a proposition which links the summability of
a family of series and that of families of coefficients.

Property 4. A family {si}i∈I of K〈〈M〉〉 is summable with sum s if, and only,
if for each m in M , the family {<si, m>}i∈I of elements of K is summable
with sum <s, m>. ��

2.2 Rational series

We are now ready to define the star operation on a series. We must nevertheles
introduce here an assumption on the semiring, somehow an axiom of infinite
distributivity. After that the definition of rational series comes easily, the dou-
ble definition indeed, one as a closure under rational operations and one by
means of rational expressions which opens the way to effective computations.
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Rational and recognisable series 11

2.2.1 Star of a series

We start by considering the problem in arbitrary semirings and not only in
the semirings of series.

Let t be an element of a topological semiring T; it is possible for the family
{tn}n∈N to be, or not to be, summable. If it is summable, we call its sum the
‘star of t’ and write it t∗:

t∗ =
∑
n∈N

tn ,.

Whether t∗ is defined depends on t, on T, on the distance on T, or on a
combination of all these elements. For example, (0T)∗ = 1T is defined for
all T; if T = Q , we have (1

2 )∗ = 2 if Q is equipped with the natural topology,
or undefined if the chosen topology is the discrete topology, while 1∗ is not
defined in either case.

Lemma 2. Let T be a topological semiring and t an element of T whose star
is defined. We have the double equality

t∗ = 1T + t t∗ = 1T + t∗t . (1)

Proof. We obviously have t�n = 1T + t t<n = 1T + t<nt . As lim t<n =
lim t�n = t∗ , and as addition and multiplication are continuous operations
on T, we obtain (1) by taking the limit of each side of the above equation. ��
Remark 3. If T is a topological ring, and if the star of t is defined, (1) can be
written t∗ − t t∗ = t∗ − t∗t = 1 or (1 − t) t∗ = t∗(1 − t) = 1 and so t∗ is the
inverse of 1 − t . Hence the classic identity

t∗ =
1

1 − t
= 1 + t + t2 + · · · , (2)

is justified in full generality.

Star of a proper series

By reference to polynomials and to series in one variable, we call constant
term of a series s of K〈〈M〉〉 the coefficient of the neutral element of M in s :
c(s) = <s, 1M > . A power series is called proper if its constant term is zero.
The sum of two proper series is a proper series; the product of a proper series
with any other series is a proper series, since M is graded.

If s is proper, the family {sn
∣∣ n ∈ N} is locally finite and thus the star

of a proper series of K〈〈M〉〉 is defined.

Lemma 3 (Arden). Let s and t be two series of K〈〈M〉〉; if s is a proper
series, each of the equations

X = sX + t (3)
and X = X s + t (4)

has a unique solution: the series s∗t and ts∗ respectively.
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Proof. In (1), we replace t by s and multiply on the left (resp. on the right)
by t and we obtain that s∗t (resp. ts∗) is a solution of (3) (resp. of (4)).
Conversely, if u is a solution of the equation X = t + sX , we have

u = t + su =⇒ u = t + st + s2u = · · · = s<nt + snu ,

for all integers n. Since s is proper, and multiplication continuous, we have
limsn = limsnu = 0 ,from which we deduce u = lim(s<nt) = (lims<n) t = s∗t .

��
From which we deduce:

Proposition 3. Let s and t be two proper series of K〈〈M〉〉; the following
equalities (or identities) hold:

(s + t)∗ = s∗(ts∗)∗ = (s∗t)∗s∗ , (S)
(st)∗ = 1 + s (ts)∗t , (P )

∀n ∈ N s∗ = s<n(sn)∗ . (Zn)

Remark 4. It follows by Lemma 1 that a square matrix m of dimension Q
with elements in K〈〈M〉〉 is a proper series of KQ×Q〈〈M〉〉 if all its elements
are proper series; (we say in this case that m is proper), and hence that the
identities S, P and Zn are satisfied by proper matrices.

Strong semirings and star of an arbitrary series

The star of an arbitrary series, not necessarily proper, may or may not be
defined. The following proposition allows us to tell the difference between the
two cases. First, we make a timely definition, to avoid a difficulty.

Definition 3. A topological semiring is strong if the product of two summable
families is a summable family; that is, if {si

∣∣ i ∈ I} and {tj
∣∣ j ∈ J}

are two summable families with sum s and t respectively, then the family
{si tj

∣∣ (i, j) ∈ I×J} is summable with sum st .

All the semirings which we shall consider are strong: semirings equipped
with the discrete topology, the sub-semirings of Cn (equipped with the natural
topology), and the positive semirings. We then easily verify:

Property 5. The semirings of matrices and the semirings of series on a graded
monoid, with coefficients in a strong semiring, are strong. ��

Let s be a series of K〈〈M〉〉; the proper part of s is the proper series that
coincides with s for all the elements m of M other than 1M . It is convenient
to write s0 = c(s) for the constant term of s, and sp for the proper part of s:

<sp, 1M > = 0K and ∀m ∈ M \ 1M <sp, m> = <s, m> ,
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and we write s = s0 + sp (rather than s = s0 1M + sp ). These definition and
notation are taken in view of the following, which generalises to series with
coefficients in an arbitrary semiring a result already established for series with
coefficients in a continuous semiring.

Proposition 4. Let K be a strong topological semiring and M a graded
monoid. Let s be a series of K〈〈M〉〉, s0 its constant term and sp its proper
part. Then s∗ is defined if and only if s∗0 is defined and in this case we have

s∗ = (s∗0 sp)∗s∗0 = s∗0(sp s∗0)
∗ . (5)

Proof. The condition is necessary since <sn, 1M > = s0
n and, if s∗ is defined,

the coefficients of 1M in {sn}n∈N form a summable family.
Conversely, assume that {sn

0}n∈N is summable, with sum s∗0 . For all pairs
of integers k and l, set

Pk,l =
∑

i0,i1,...,ik∈N

i0+i1+···+ik=l

si0
0 sp si1

0 sp · · · sik−1
0 sp sik

0 .

By convention, set P0,l = sl
0 and Pk,0 = sk

p . We verify by inspection that,
for all integers n

sn = (s0 + sp)n =
l=n∑
l=0

Pn−l,l . (6)

By induction on k, we will show that the family

Fk = {si0
0 sp si1

0 sp · · · sik−1
0 sp sik

0

∣∣ i0, i1, . . . , ik ∈ N}

is summable in K〈〈M〉〉, with sum

Qk = (s∗0 sp)k s∗0 = s∗0 (sp s∗0)
k .

In fact, the hypothesis on s0 ensures the property for k = 0, and also that
the family G = {s0

n sp

∣∣ n ∈ N} is summable in K〈〈M〉〉, with sum s0
∗sp .

The family Fk+1 is the product of the families G and Fk and the assumption
that K, and hence K〈〈M〉〉, is strong gives us the conclusion.

Hence we deduce that, for each k, the family {Pk,l

∣∣ l ∈ N} is summable,
with sum Qk. The family {Qk

∣∣ k ∈ N} is locally finite, hence summable,
with sum

t =
∞∑

k=0

Qk = (s∗0 sp)∗ s∗0 = s∗0 (sp s∗0)
∗ .

We can now easily finish the proof by showing that the ‘doubly indexed’
family {Pk,l

∣∣ k, l ∈ N} is summable, with sum t . Equation (6), and Prop-
erty 2, then ensure that the family {sn

∣∣ n ∈ N} is summable with sum t .
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2 s0

3

sp
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2

sp
3

(s0 + sp)
n

Qk

Pk,l

s0sp + sps0

Fig. 1. A graphical representation of Proposition 4

The case of cycle-free series falls in the scope of Proposition 4. In the
same spirit as Remark 4, we note that (5) holds for every matrix m such that
the star of its matrix of constant terms is defined. A particularly interesting
case of this is where the matrix of constant terms is strict upper triangular,
another case of cycle-free series.

Remark 5. Along the line of Remark 3, it holds that if K is a ring, a series
of K〈〈M〉〉 is invertible if, and only, if its constant term is invertible.

2.2.2 The family of rational series

We first characterise rational series ‘from above’ with the definition of rational
operations and of closed families, and then inductively ‘from below’, with the
definition of weighted rational expressions.

K-rational operations

The rational operations on K〈〈M〉〉 are:
(i) the K-algebra operations, that is:

• the two exterior multiplications by the elements of K ;
• the addition;
• the product ;

(ii) the star operation, which is not everywhere defined.
Point (ii) leads us to tighten the notion of closure: a subset E of K〈〈M〉〉

is closed under star if s∗ belongs to E for every series s in E such that s∗ is
defined.
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A subset of K〈〈M〉〉 is rationally closed if it is closed under the rational
operations; that is, if it is a sub-algebra of K〈〈M〉〉 closed under the star oper-
ation. The intersection of any family of rationally closed subsets is rationally
closed and thus the rational closure of a set E is the smallest rationally closed
subset which contains E , written KRatE .

Definition 4. A series of K〈〈M〉〉 is K-rational if it belongs to the rational
closure of K〈M〉, the set of polynomials on M with coefficients in K. The set
of K-rational series (over M with coefficients in K) is written KRatM .

If the monoid M is implied by the context, we shall say K-rational series,
or just rational series, if K is also understood.

Example 1. We find it convenient to denote by P the characteristic series of
a subset P of M . Set K = N and let P and Q be two subsets of M ;
(i) the union P ∪ Q is unambiguous if and only if (P ∪ Q) = P + Q ;
(ii) the product P Q is unambiguous if and only if (P Q) = P Q ;
(iii) the star of P is unambiguous if and only if P ∗ = (P )∗ .

A subset of M is unambiguously rational if it belongs to the unambigu-
ous rational closure of finite subsets of M . The family of unambiguous ra-
tional subsets of M is written URatM . Then P ∈ URatM if, and only
if P ∈ NRatM and then P ∈ KRatM for any K. It is well-known that
URatA∗ = RatA∗ and, for instance, that URat (A∗×B∗) is strictly con-
tained in Rat (A∗×B∗) .

Rational K-expressions

The definition of expressions will provide useful tools and handier ways to deal
with rational series. Let {0, 1, +, ·, ∗} be five function symbols. Naturally, the
functions + and · are binary, ∗ is unary, and 0 and 1 are nullary (they represent
constants). We define, for each k in K, two unary functions, also written k.

Definition 5. A weighted rational expression over M with weight in K, or
rational K-expression over M , is any well formed formula obtained inductively
in the following manner.
(i) 0, 1, and m, for all m in M , are rational expressions (the atomic ex-
pressions or formulas).
(ii) If E is a rational expression and k is in K, then (kE) and (Ek) are
rational expressions.

(iii) If E and F are rational expressions, then so are (E + F) , (E · F) ,
and (E∗) .

We write K RatEM for the set of rational K-expressions over M .

Remark 6. (i) We can restrict the atomic formulas, other than 0 and 1, to
be elements g of any given generating set G of M without reducing the power
of the definition. That is what we usually do when M is a free monoid A∗.
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(ii) We could have considered the elements of K to be atoms and not opera-
tors, again without changing the power of the definition, and that would sim-
plify somewhat some upcoming equations. The chosen way is however more
consistent with the upcoming definition of the derivation of K-expressions
over A∗.

We define the depth of an expression E, d(E), as the height of the syntactical
tree of the corresponding formula:

d(0) = d(1) = d(m) = 0 , for all m in M ,

d((kE)) = d((Ek)) = d((E∗)) = 1 + d(E) ,

d((E + F)) = d((E · F)) = 1 + max
(
d(E), d(F)

)
.

The constant term of an expression E, c(E), is defined by induction on the
depth of E; it is an element of K, computed by the following equations:

c(1) = 1K , c(0) = c(m) = 0K for all m in M ,

c((kE)) = k c(E) , c((Ek)) = c(E)k ,

c((E + F)) = c(E) + c(F) , c((E · F)) = c(E)c(F)
and c((E∗)) = c(E)∗ if the right handside is defined in K.

A rational K-expression is a formula, and this formula may represent an
element of K〈〈M〉〉 or not, the distinction between the two cases being made by
the constant term, exactly as for the star of an arbitrary series and using that
result. We shall say that an expression in K RatEM is valid if its constant
term is defined. The series denoted by a valid expression E, which we write |||E|||,
is defined by induction on the depth of E by the equations

|||0||| = 0K , |||1||| = 1M , |||m||| = m ∀m ∈ M ,

|||(kE)||| = k |||E||| , |||(Ek)||| = |||E|||k ,

|||(E + F)||| = |||E||| + |||F||| , |||(E · F)||| = |||E||| |||F||| , and |||(E∗)||| = |||E|||∗ .

We verify both that these equations are well defined and that they are
consistent, in the sense that the constant term of the expression E is the
constant term of the series |||E|||, in parallel, and in the same induction, using
Proposition 4. In other words, to define |||E|||, we shall also have proved:

Property 6. For all valid K-expressions E, c(E) = <|||E|||, 1M > . ��
Example 2. Take M = {a, b}∗ and K = Q . The Q-expression (a∗+(−1b∗))∗

is valid, as is E1 = (1
6 a∗+ 1

3 b∗)∗ since c(1
6 a∗ + 1

3 b∗) = 1
2 , and hence c(E1) =

2 is defined; (a∗ + b∗)∗ is not valid.

The set of series denoted by valid K-expressions is rationally closed, and
every rationally closed subset of K〈〈M〉〉 that contains every element of M
(and thus K〈M〉) contains every series denoted by a valid K-expression, which
proves:
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Proposition 5. A series of K〈〈M〉〉 is K-rational if and only if it is denoted
by a valid rational K-expression over M . ��

3 Weighted automata

An automaton over M with weight (or with multiplicity) in K, or K-
automaton4 over M is a graph labelled with elements of K〈〈M〉〉, associated
with two maps from the set of vertices to K〈〈M〉〉. We develop and complete
this definition and build on the identification of a graph with its incidence ma-
trix. The proofs will be performed systematically with matrix computations.
However, we continue to use the graph representation and its vocabulary to
aid intuition.

3.1 The behaviour of a weighted automaton

An automaton A over M with weights in K is specified by the choice of the
following:5

• A non-empty set Q of states of A, also called the dimension of A.
• An element E of K〈〈M〉〉Q×Q, a square matrix of dimension Q with entries

in K〈〈M〉〉, called the transition matrix of A; we can view each entry Ep,q

as the label of a unique edge which goes from state p to state q in the
graph with vertices Q and we write p

x−−→ q , or p
x−−→
A

q , if x = Ep,q .

(If Ep,q = 0K , we consider there to be no edge from p to q.)
• Two elements I and T of K〈〈M〉〉Q; that is, two functions I and T from Q

to K〈〈M〉〉: I is the initial function and T the final function of A; they can
also be seen as vectors of dimension Q: I is a row vector and T a column
vector, called respectively the initial vector and final vector of A.

The K-automaton A is written, naturally enough,

A = 〈 I, E, T 〉 .

We use the familiar conventions to represent K-automata graphically; the
values of I labelling the incoming arrows and those of T the outgoing arrows.

A path in A is a sequence of transitions such that the source of each is the
destination of the previous one; it can be written

c := p0
x1−−−→ p1

x2−−−→ p2 · · · xn−−−→ pn .

The label, or result of c, written |||c |||, is the product of the labels of the transi-
tions of c. In the above case, |||c ||| = x1x2 · · ·xn .
4 Or weighted automaton if K is understood or immaterial.
5 This definition is a priori more general than the one given at Chap. 3; the two

will coincide for finite automata.
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A computation in A is a path to which is added an arrow arriving at the
source and one leaving from the destination, with their respective labels. The
computation corresponding to the above path is hence

d :=
Ip0−−−→ p0

x1−−−→ p1
x2−−−→ p2 · · · xn−−−→ pn

Tpn−−−−→ .

The label, or result, of d, still written |||d|||, is the product of the label of the
incoming arrow, that of the path, and that of the outgoing arrow, in that
order; in our case: |||d||| = Ip0x1x2 · · ·xnTpn .

The definitions we have made for weighted automata are indeed a gener-
alisation of the classical definitions.
(i) An automaton over A is a B-automaton over A∗; an automaton over M
is a B-automaton over M .
(ii) The distinction between path and computation, which are often used as
synonyms, may seem useless. But apart from the fact that it is consistent
with our terminology — ‘path’ refers to ‘graph’ while ‘computation’ refers to
‘automaton’, and what distinguishes an automaton from a graph is precisely
that initial and final states are taken into account — it was only introduced
in order to make precise definitions that incorporate the generality that we
have now allowed for I and T . In the majority of cases, the non-zero elements
of I and T will be scalar (that is, elements of K), usually equal to 1K and the
two notions will coincide.

(iii) Along the same lines, the disappearance of the notion of a successful
computation is merely apparent. A state p such that the component Ip is
non-zero (that is, different from 0K〈〈M〉〉) can be called initial, and a state
where Tp is non-zero can be called final. We can then say that a computation
is successful if its source is an initial state and its destination is a final state.

Definition 6. The behaviour of an automaton A = 〈 I, E, T 〉 of finite di-
mension Q is defined if and only if for all p and q in Q the family of labels of
paths with source p and destination q is summable. In this case, the family of
labels of computations of A is summable and its sum is the behaviour of A,
written |||A||| . We also say that A accepts, or realises, the series |||A||| .

The description of the transitions of an automaton by a matrix is justified
by the fact that a walk over a graph corresponds to a matrix multiplication.
This is expressed by the following proposition.

Lemma 4. Let A = 〈 I, E, T 〉 be a K-automaton over M of finite dimension.
For every integer n, En is the matrix of the sums of the labels of paths of
length n.

Proof. By induction on n. The assertion is true for n = 1 (and also for n = 0
by convention). The definition of the (n + 1)th power of E is

∀p, q ∈ Q (En+1)p,q =
∑
r∈Q

(En)p,r Er,q .

Draft of a chapter for the HANDBOOK OF WEIGHTED AUTOMATA Not to be circulated 19-Sep-2008



Rational and recognisable series 19

Every path of length n + 1 is the concatenation of a path of length n with a
path of length 1, that is, a single transition. We can therefore write6

{c ∣∣ c := p −−→
A

q , l(c) = n + 1} =⋃
r∈Q

{(d, e)
∣∣ d := p −−→

A
r , l(d) = n , e := r −−→

A
q ∈ E} ,

and hence∑
{|||c ||| ∣∣ c := p −−→

A
q , l(c) = n + 1}

=
∑
r∈Q

({|||d||| |||e||| ∣∣ d := p −−→
A

r , l(d) = n , e := r −−→
A

q ∈ E})
=

∑
r∈Q

[ (∑
{|||d||| ∣∣ d := p −−→

A
r , l(d) = n}

)
Er,q

]
.

As
∑{|||d||| ∣∣ d = p −−→

A
r , l(d) = n} = (En)p,r by the induction hypothesis,

the lemma is proved. ��
Since the sum of the results of the computations of length n is equal by

definition to the product I ·En · T , and since the behaviour of A is equal to
the sum of the results of the computations of all the lengths, it follows that:

Corollary 3. Let A = 〈 I, E, T 〉 be a K-automaton of finite dimension whose
behaviour is defined, then E∗ is defined and we have |||A||| = I · E∗ · T . ��
Example 3. The N-automaton over {a, b}∗ defined by

B1 =
〈(

1 0
)
,

(
a + b b

0 a + b

)
,

(
0
1

)〉
is shown in Figure 2 (left). A simple calculation allows us to determine its
behaviour:

∀f ∈ A∗ <|||B1|||, f> = |f |b ; that is |||B1||| =
∑

f∈A∗
|f |b f = t1 .

Another N-automaton is shown in Figure 2 (right)

C1 =
〈(

1 0
)
,

(
a + b b

0 2a + 2b

)
,

(
0
1

)〉
.

If we use the convention that each word f of A∗ is considered as a number
written in binary, interpreting a as the digit 0 and b as the digit 1, and if we
write f for the integer represented by the word f , it is easy to verify that f
is computed by C1 in the sense that

∀f ∈ A∗ <|||C1|||, f> = f ; that is |||C1||| =
∑

f∈A∗
f f .
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b

a + b a + b

b

a + b 2a + 2b

Fig. 2. The N-automata B1 and C1

Example 4. To illustrate the case where K is different from N: the M-auto-
maton7 S1 over {a, b}∗ and defined by

S1 =
〈(

0 0
)
,

(
0a + 1b ∞

∞ 1a + 0b

)
,

(
0
0

)〉
is shown in Figure 3. Clearly the support of |||S1||| is all of {a, b}∗ and the
coefficient in |||S1||| of an arbitrary word f of {a, b}∗ is min{|f |a, |f |b}.

p q0 0 0 0

0a ⊕ 1b 1a ⊕ 0b

Fig. 3. The M-automaton S1

The behaviour of an automaton was defined by returning to the essence of
an ‘automaton’: a procedure for describing computations. With this definition,
the behaviour of the two automata in Figure 4 (a) and (b) are not defined
although in the first case the family {I ·En · T }n∈N is summable since all its
terms are zero, and in the second E∗ is defined since E2 = 0 . On the other
hand, these examples also lead us to note that the transition between each
pair of states p and q must be unique, and labelled Ep,q ; otherwise we would
be able to ‘decompose’ these entries in such a way that the family of labels of
paths would no longer be summable.

From Lemma 1 and Proposition 4 we deduce a sort of generalisation of
the same Proposition 4.

Proposition 6. Let K be a strong topological semiring and M a graded
monoid. The behaviour of a K-automaton over M , A = 〈 I, E, T 〉 is de-
fined if and only if the behaviour of the K-automaton A0 = 〈 I, E0, T 〉 is
defined, where E0 is the matrix of constant terms of entries of E, and in that
case we have

|||A||| = I · (E0
∗ · Ep)

∗ · E0
∗ · T . ��

6 The length of a path c is here written l(c).
7 The ‘tropical’ semiring M = 〈N∞, min, + 〉 . One must remember that 0 = 1M is

the neutral element of multiplication in M.
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1

1

−1

1

1 1

(a)

1

1

−1

1

1 −1

(b)

Fig. 4. Two Z-automata with behavioural problems

The example of Figure 4 (b) shows that it is not sufficient that E0
∗ be

defined, nor even that E0 be nilpotent8 for the behaviour of A be defined.
On the other hand, the behaviour of A is defined when E0 is strict upper
triangular since in this case the number of computations in A0 is finite.

Definition 7. A K-automaton over M , A = 〈 I, E, T 〉 , is finite if:
(i) the dimension of A is finite;
(ii) the coefficients of E, I and T are polynomials; that is, have finite support.

3.2 The fundamental theorem of automata

One hesitates to say of a proposition, ‘here is the Fundamental Theorem’.
However, this seems justified for the one that follows: it states completely
generally, at least under the current assumption that M is a graded monoid
of finite type and K a strong semiring, that what one can ‘do’ with a finite
automaton is precisely what one can ‘do’ with rational operations.

Theorem 1. A series of K〈〈M〉〉 is rational if and only if it is the behaviour
of some finite K-automaton over M .

Since every language of A∗ is the behaviour of an unambiguous automaton
(of a deterministic one indeed) — we quoted at Example 1 that URatA∗ =
RatA∗ — we then have the following.

Proposition 7. The characteristic series of a rational language of A∗ is a
K-rational series, for any semiring K. ��

3.2.1 Proper automata

We can make Theorem 1 both more precise and more general, closer to the
properties used in the proof. For this we need to define a restricted class of
K-automata.

Definition 8. A K-automaton over M , A = 〈 I, E, T 〉 , is proper if:
(i) the matrix E is proper;
(ii) the entries of I and T are scalar; that is, I ∈ K1×Q and T ∈ KQ×1 .

8 That is, there exists an n such that E0
n = 0 .
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It follows from Proposition 6 that the behaviour of a proper automaton is
well defined; the following result adds the converse.

Proposition 8. Every K-automaton A over M whose behaviour is defined is
equivalent to a proper automaton whose entries, other than the scalar entries
of the initial and final vectors, are linear combinations of proper parts of the
entries of A.

Proof. We first show that A = 〈 I, E, T 〉 is equivalent to an automaton
B = 〈 J, F, U 〉 where the entries of J and U are scalar. We set

J =
(
1 0 0

)
, F =


0 I 0

0 E T

0 0 0

 , U =


0

0

1

 . (7)

Every path in B is a path or a computation in A and the behaviour of B is
defined if and only if that of A is, and in that case E∗ is defined. We verify
by induction that, for every integer n greater than or equal to 2,

Fn =

0 I · En−1 I · En−2 · T
0 En En−1 · T
0 0 0

 . (8)

We have J ·U = J ·F ·U = 0 , J ·Fn+2·U = I ·En ·T , hence J ·F ∗ ·U = I ·E∗ ·T
and 〈J, F, U 〉 is equivalent to A.

Next, starting from an automaton B = 〈J, F, U 〉 whose initial and final
vectors are scalar, we set

F = F0 + Fp .

The behaviour of B is defined if and only if the behaviour of the automaton
〈J, F0, U 〉 is defined, and in this case F ∗

0 is defined too. We then have

|||B||| = J · F ∗ · U = J · H∗ · V ,

with H = F ∗
0 · Fp and V = F ∗

0 · U . Since F ∗
0 is an element of KQ×Q, the

entries of H are linear combinations (with coefficients in K) of entries of Fp

and the entries of V are scalar. ��

3.2.2 Standard automata

It is convenient to define an even more restricted class of automata and to
show that an automaton of that class can be canonically associated with every
K-expression. .
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Definition 9. A K-automaton A = 〈 I, E, T 〉 is standard if the initial vector
I has a single non-zero coordinate i , equal to 1K, and if this unique initial
state i is not the destination of any transition whose label is non-zero.

In matrix terms, this means that A can be written

A =

〈(
1 0

)
,

 0 K

0 F

 ,

 c

U

〉
. (9)

The definition does not forbid the initial state i from also being final; that is,
the scalar c is not necessarily zero. If A is not only standard but also proper,
c is the constant term of |||A||| . The proof of Proposition 8 itself proves that:

Proposition 9. Every K-automaton A over M whose behaviour is defined
is equivalent to a standard proper automaton whose entries, other than the
scalar entries of the initial and final vectors, are linear combinations of proper
parts of the entries of A. ��

We now define operations on standard automata (as in Chap.3, Sec. 2.2)
that are parallel to the rational operations. Let A (as in (9)) and A′ (with
obvious translation) be two proper standard automata; the following standard
K-automata are defined:

• kA =

〈(
1 0

)
,

 0 kK

0 F

,

 k c

U


〉

and Ak =

〈(
1 0

)
,

 0 K

0 F

,

 ck

U k


〉

,

• A+A′ =

〈(
1 0 0

)
,


0 K K ′

0 F 0

0 0 F ′

,


c + c′

U

U ′


〉

,

• A·A′ =

〈(
1 0 0

)
,


0 K cK ′

0 F H

0 0 F ′

,


cc′

V

U ′


〉

,
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where H = (U · K ′) · F ′ and V = U c′ + (U · K ′) · U ′ ;

• A∗ =

〈(
1 0

)
,

 0 c∗K

0 G

,

 c∗

U c∗


〉

,

which is defined if and only if c∗ is defined, and where G = U · c∗K + F .
By construction, kA , Ak , A + A′ , A · A′ , and A∗ are all proper.

Straightforward computations show that |||kA||| = k |||A||| , |||Ak||| = |||A|||k ,
|||A + A′||| = |||A||| + |||A′||| , |||A · A′||| = |||A||||||A′||| and |||A∗||| = |||A|||∗ .

With every valid rational K-expression E, we thus canonically associate,
by induction on the depth of E, a proper standard K-automaton SE that we
call the standard automaton of E. Let �(E) denote the litteral length of E, that
is, the number of atoms different from 0 and 1 in E. It holds:

Proposition 10. If E is a valid rational K-expression, then |||SE||| = |||E||| and
the dimension of SE is �(E) + 1 .

Example 5. (Example 2 cont.) Figure 5 shows the Q-automaton SE1 associ-
ated with the rational expression E1 = (1

6 a∗ + 1
3 b∗)∗ by the construction

described above.

1

2

2

2

1
3

a

2
3

b

1
3

a

2
3

b

4
3

a

5
3

b

Fig. 5. The Q-automaton SE1

3.2.3 Statement and proof

Definition 10. We will say that a family of series is proper if it contains
the proper part of each of its elements.9

In particular, the polynomials form a proper family of K〈〈M〉〉.
Theorem 2. Let C be a proper family of series of K〈〈M〉〉. A series s
of K〈〈M〉〉 belongs to KRatC if and only if s is the behaviour of a proper stan-
dard K-automaton over M of finite dimension whose (non-scalar) entries are
finite linear combinations of elements of C.
9 As opposed to all the series in the family being proper.
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Proof. The proof of Theorem 2 splits in the “if” and “only if” parts which,
by Proposition 5, essentially amount to show respectively that given a proper
automaton we can compute an equivalent valid rational expression and con-
versely that given a valid rational expression we can compute an equivalent
automaton.

We write D for the family of behaviours of proper standard K-automata
whose entries are linear combinations of elements of C. We first show that D
contains 0K , behaviour of the standard automaton 〈 1K, 0K, 0K 〉 of dimen-
sion 1, and 1K , behaviour of 〈 1K, 0K, 1K 〉 , as well as every element in C: for
s in C, sp is in C since C is a proper family and it holds:

s =
(
1K 0K

) · (0K sp

0K 0K

)∗
·
(

s0

1K

)
.

If A and A′ are two proper standard K-automata whose entries are linear
combinations of elements of C, the above constructions kA , Ak , A + A′ ,
A · A′ and A∗ show that D is rationally closed.

Conversely, we start from a proper automaton A = 〈 I, E, T 〉 whose be-
haviour is thus defined and equal to |||A||| = I ·E∗ ·T . This part then amounts
to prove that the entries of the star of a proper matrix E belong to the ratio-
nal closure of the entries of E, a statement that has already been established
in this volume (Chap. 1, Th. 12) under different hypotheses. Since we have to
reprove it anyway, we choose a slightly different method. We write |||A||| = I ·V
with V = E∗ · T . Since E is proper and by Lemmas 1 and 3, V is the unique
solution of

X = E · X + T (10)

and we have to prove that all entries of the vector V belong to the rational
closure of the entries of E. Lemma 3 already states that the property holds
if A is of dimension 1. For A of dimension Q, we write (10) as a system of
‖Q‖ equations:

∀p ∈ Q Vp =
∑
q∈Q

Ep,qVq + Tp . (11)

We choose (arbitrarily) one element q in Q and by Lemma 3 again it comes:

Vq = E∗
q,q

 ∑
p∈Q\{q}

Eq,pVp + Tp

 ,

an expression for Vq that can be substituted in every other equations of the
system (11), giving a new system

∀p ∈ Q \ {q} Vp =
∑

r∈Q\{q}

[
Ep,r + Ep,qE

∗
q,qEq,r

]
Vr+Ep,qE

∗
q,qTq+Tr .

An the property is proved by induction hypothesis. ��
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The fundamental theorem states the equality of two families of series (in-
finite objects) but its proof is better understood as the description of two
algorithms. Here we have chosen on one hand the construction of the stan-
dard automaton of an expression and on the other hand the algorithm known
as the state elimination method for the computation of an expression denoting
the behaviour of an automaton. In the latter case, the result depends on the
order of elimination (the choice of the state q). The relationship between the
possible different results is given by the following.

Proposition 11. Let A be a K-automaton of dimension Q. The expressions
denoting |||A||| and obtained by the state elimination method with different order
on Q are all equivalent modulo the identities S and P . ��

Once again, what is important in this section is that no other assumption
on M or K is made beside the ones that are currently taken to allow the
definition of K-rational series on M . The same results would hold if K is
chosen to be a Conway semiring and M an arbitrary monoid (not necessarily
graded).

3.3 Conjugacy and covering of automata

After the definition of any structure one looks for morphisms between objects
of that structure, and weighted automata are no exception. Moreover, mor-
phisms of graphs, and therefore of classical Boolean automata, are not less
classical, and one waits for their generalisation to weighted automata. Taking
into account multiplicity proves however to be not so simple.

3.3.1 From conjugacy to covering

We choose to describe the morphisms of weighted automata, which we call
coverings, via the notion of conjugacy, borrowed from the theory of symbolic
dynamical systems.

Definition 11. A K-automaton A = 〈 I, E, T 〉 is conjugate to a K-automaton
B = 〈 J, F, U 〉 if there exists a matrix X with entries in K such that

I X = J, E X = X F, and T = X U.

The matrix X is the transfer matrix of the conjugacy and we write A X=⇒ B .

In spite of the idea conveyed by the terminology, the conjugacy relation is
not an equivalence but a preorder relation. Suppose that A X=⇒ C holds; if
C Y=⇒ B then A XY=⇒ B , but if B Y=⇒ C then A is not necessarily conjugate
to B, and we write A X=⇒ C Y⇐= B or even A X=⇒ Y⇐= B . This being well
understood, we shall speak of “conjugate automata” when the orientation
does not matter.

As J FnU = I X FnU = I E X Fn−1U = · · · = I EnX U = I EnT for
every integer n, it holds:
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Proposition 12. Two conjugate automata are equivalent.

Example 6. It is easily checked that the Z-automaton V1 of Figure 6 is conju-
gate to the Z-automaton W1 of the same figure with the transfer matrix X1:

X1 =


1 0 0 0
0 −1 1 0
0 1 1 0
0 0 0 1

 .

a

−2a

b

2bV1

−a

b

−a

b

a
b

a
b W1

Fig. 6. Two conjugate Z-automata.

Let ϕ be an equivalence relation on Q or, what is the same, let ϕ : Q → R
be a surjective map and Hϕ the Q×R-matrix where the (q, r) entry is 1 if
ϕ(q) = r , 0 otherwise. Since ϕ is a map, each row of Hϕ contains exactly
one 1 and since ϕ is surjective, each column of Hϕ contains at least one 1.
Such a matrix is called an amalgamation matrix. ([29, Def. 8.2.4]).

Definition 12. Let A and B be two K-automata of dimension Q and R re-
spectively. We say that B is a K-quotient of A and conversely that A is a
K-covering of B if there exists a surjective map ϕ : Q → R such that A is
conjugate to B by Hϕ

The notion of K-quotient is lateralised since the conjugacy relation is not
symmetric. Somehow, it is the price we pay for extending the notion of mor-
phism to K-automata. Therefore the dual notions co-K-quotient and co-K-
covering are defined in a natural way.

Definition 13. With the above notation, we say that B is a co-K-quotient
of A and conversely that A is a co-K-covering of B if there exists a surjective
map ϕ : Q → R such that B is conjugate to A by tHϕ .

We also write ϕ : A → B and call ϕ, by way of metonymy, a K-covering,
or a co-K-covering from A onto B.

Example 7. Consider the N-automaton C2 of Figure 7 and the map ϕ2 from
{j, r, s, u} to {i, q, t} such that jϕ2 = i , uϕ2 = t and rϕ2 = sϕ2 = q , then

Hϕ2 =


1 0 0
0 1 0
0 1 0
0 0 1


and ϕ2 is an N-covering from C2 onto V2 and a co-N-covering from C2 onto V ′

2.
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j r

s u

C2

b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

i q tV2
2b 2b

b
a

b

2a

2b

4a

4b

i q t V ′
2

b 4b

b
a

b

2a

2b

4a

4b

Fig. 7. C2 is an N-covering of V2 and a co-N-covering of V2

3.3.2 Minimal K-quotient

Let us first express that in a K-covering ϕ : A → B the image is somewhat
immaterial and only counts the map equivalence of ϕ. From any amalgamation
matrix Hϕ, we construct a matrix Kϕ by transposing Hϕ and by cancelling
certain entries in such a way that Kϕ is row monomial (with exactly one 1 per
row); Kϕ is not uniquely determined by ϕ but also depends on the choice of a
‘representative’ in each class for the map equivalence of ϕ. The product KϕHϕ

is the identity matrix of dimension R. Easy matrix computations establish the
following.

Proposition 13. Let A = 〈 I, E, T 〉 and B = 〈J, F, U 〉 be two K-automata
of dimension Q and R respectively. A surjective map ϕ : Q → R is a K-
covering if, and only if, A satisfies the two equations

Hϕ · Kϕ · E · Hϕ = E · Hϕ , (12)
and Hϕ · Kϕ · T = T . (13)

In which case B is defined by

F = Kϕ · E · Hϕ , J = I · Hϕ and U = Kϕ · T . (14)

Theorem 3. Let A be a K-automaton of finite dimension over M . Among all
the K-quotients of A (resp. among all the co-K-quotients of A), there exists
one, unique up to isomorphism and effectively computable from A, which has a
minimal number of states and of which all these K-automata are K-coverings
(resp. co-K-coverings).

Proof. A surjective map ϕ : Q → R defines a K-covering ϕ : A → B if Equa-
tions (12) and (13) (which do not involve B) are satisfied.
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To prove the existence of a minimal K-quotient, it suffices to show that if
ϕ : Q → R and ψ : Q → P are two maps that define K-coverings, the map
ω : Q → S also defines a K-covering, where ω = ϕ ∨ ψ is the map whose
map equivalence is the upper bound of those of ϕ and ψ; that is, the finest
equivalence which is coarser than the map equivalences of ϕ and ψ. In other
words, there exist ϕ′ : R → S and ψ′ : P → S such that ω = ϕϕ′ = ψψ′

and each class modulo ω = ϕ ∨ ψ can be seen at the same time as a union
of classes modulo ϕ and as a union of classes modulo ψ. It follows that

E · Hω = E · Hϕ · Hϕ′ = E · Hψ · Hψ′ ; (15)

and if two states p and r of Q are congruent modulo ω, there exists q such
that pϕ = qϕ and qψ = rψ (in fact a sequence of states qi etc.). The rows p
and q of E · Hϕ are equal, and the rows q and r of E · Hψ are equal, hence,
by (15), the rows p and r of E · Hω are too.

To compute this minimal K-quotient we can proceed by successive refine-
ments of partitions, exactly as for the computation of the minimal automaton
of a language from a deterministic automaton which recognises the language.

In what follows the maps ϕi are identified with their map equivalences;
the image is irrelevant. A state r of Q is identified with the row vector of
dimension Q, characteristic of r and treated as such. For example, rϕ = sϕ
can be written r · Hϕ = s · Hϕ .

The maps ϕ0 have the same map equivalence as T ; that is,

r · Hϕ0 = s · Hϕ0 ⇔ r · T = s · T ,

which can also be written

Hϕ0 · Kϕ0 · T = T , (16)

and the same equation holds for every map finer than ϕ0. For each i, ϕi+1 is
finer than ϕi and, by definition, r and s are joint in ϕi (that is, r·Hϕi = s·Hϕi )
and disjoint in ϕi+1 if r · E · Hϕi 
= s · E · Hϕi . Let j be the index such that
ϕj+1 = ϕj , that is, such that

r · Hϕj = s · Hϕj =⇒ r · E · Hϕj = s · E · Hϕj , (17)

which can be rewritten

Hϕj · Kϕj · E · Hϕj = E · Hϕj . (18)

By (16) and (18), ϕj is a K-covering.
Conversely, every K-covering ψ satisfies (13) and is hence finer than ϕ0.

Then, for all i, if ψ is finer than ϕi it must also be finer than ϕi+1. In fact,
if r and s are joint in ψ, it follows that r · Hψ = s · Hψ and hence also
r · Hϕi = s · Hϕi since ϕi is coarser than ψ, and hence r and s are joint
in ϕi+1: ψ is finer than ϕj which is thus the coarsest K-covering. ��
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Remark 7. Even if the minimal K-quotient of a K-automaton and the minimal
automaton of a language are computed with the same algorithm, they are nev-
ertheless fundamentally different: the second automaton is canonically associ-
ated with the language, whereas the first is associated with the K-automaton
we started from, and not with its behaviour.

Remark 8. The above construction applies of course if K = B and thus shows
that the notion of minimal (B-)quotient is well-defined even for a non deter-
ministic automaton (as we just wrote, this minimal quotient is not associated
with the recognised language anymore). Moreover, it can be checked that two
Boolean automata are bisimilar if, and only if, their minimal B-quotients are
isomorphic.

3.3.3 From covering to conjugacy

We have defined quotients (and co-quotients) as special case of conjugacy.
Under some supplementary hypothesis — that is naturally met in cases that
are important to us: N, Z, etc.— it can be established that a kind of converse
holds and that any conjugacy can basically realised by the composition of an
inverse co-covering and a covering.

In order to state these results, we need two further definitions. A matrix is
non degenerate if it contains no zero row nor zero column. We call circulation
matrix a diagonal invertible matrix.

Theorem 4 ([3, 2]). Let A be a Z-automaton conjugate to a Z-automaton
B by a nonnegative and nondegenerate transfer matrix X. Then there exists
a Z-automaton C that is a co-Z-covering of A and a Z-covering of B.

We can free ourselves from the two hypotheses on the transfer matrix if
we allow a further conjugacy by a circulation matrix.

Theorem 5 ([3, 2]). Let A be a Z-automaton conjugate to a Z-automaton
B by a transfer matrix X. Then there exists two Z-automata C and D and a
circulation matrix D such that C is a co-Z-covering of A, D a Z-covering of
B and C is conjugate to D by D.

Example 8 (Example 6 cont.). The Z-automata X1 of Figure 8 is a co-Z-
covering of V1, Y1 is a Z-covering of W1, and X1 is conjugate to Y1 by the
circulation matrix where the only −1 entry is at state 1.

The proof of Theorem 5 involves indeed two properties. Let us say first that
a semiring has property (P) if every element is a sum of units. The semiring N,
the ring Z and all fields have property (P). In any semiring with (P), every
matrix X can be written as X = C DR where C is a co-amalgamation, R an
amalgamation and D a circulation matrix. In Z, the dimension of D will be
the sum of the absolute value of the entries of X .
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Fig. 8. The co-covering and covering of V1 and W1.

Having secured the existence of C, D and R, the second step consists in
building the automata C and D that will fit in. To that end, we say that
a commutative monoid is equisubtractive if for all p, q, r and s such that
p + q = r + s there exist x, y, z and t such that p = x + y , q = z + t ,
r = x+ z and s = y + t . A semiring is equisubtractive if it is so as a monoid
for addition.

The semirings N and Z are equisubtractive, and if K is equisubtractive,
then so are K〈A∗〉 and K〈〈A∗〉〉. The construction of C and D will then follows
from the following property.

Lemma 5. Let K be an equisubtractive semiring and let l1, l2, . . . , ln,
k1, k2, . . . , km be elements of K such that:

l1 + l2 + . . . + ln = k1 + k2 + . . . + km.

There exists an n×m matrix G with entries in K such that the sum of the
entries of each row i is equal to li and the sum of the entries of each column j
is equal to kj. ��

Another consequence of the definition of equisubtractive semiring and of
Lemma 5 is to allow a sort of converse to Theorem 3. The existence of a
minimal K-covering implies a kind of Church-Rosser property: if we have
two diverging arrows, that is, the upper part of a commutative diagram, we
can construct the lower part of it. The following proposition states that it
is possible to complete a commutative diagram when the lower part of it is
known.

Proposition 14. Let K be an equisubtractive semiring and let A, B and C
be three K-automata.
(a) If A and B are K-coverings of C (resp. co-K-coverings of C), there exists
a K-automaton D which is a K-covering (resp. a co-K-covering) of both A
and B.
(b) If A is a K-covering of C and B is a co-K-covering of C, there exists a
K-automaton D which is both a co-K-covering of A and a K-covering of B. ��
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4 Recognisable series and representations

As in the last section, K denotes a strong semiring and M a graded monoid,
a priori arbitrary. We shall now consider another family of series of K〈〈M〉〉,
other than KRatM , but that coincide with it when M is a free monoid A∗: this
is Kleene-Schützenberger Theorem (Theorem 6). We first define these series
by means of representations.We then consider the Hadamard product of series,
which is a weighted generalisation of intersection. In a third subsection, by
considering the series over a cartesian product of monoids, we briefly sketch
the prolegomena to a theory of weighted relations. This allows, among other
things, to establish the weighted generalisation of results on the morphic image
of rational sets (Theorem 10).

4.1 The family of recognisable series

A K-representation of M of dimension Q is a morphism µ from M to the
semiring of square matrices of dimension Q with entries in K. By definition,
in fact so that we can multiply the matrices, the dimension Q is finite. A
K-representation of M (of dimension Q) is also the name we give a triple
(λ, µ, ν) where, as before,

µ : M −→ KQ×Q

is a morphism and where λ and ν are two vectors:

λ ∈ K1×Q and ν ∈ KQ×1 ;

that is, λ is a row vector and ν a column vector, of dimension Q, with coeffi-
cients in K. Such a representation defines a map from M to K by

∀m ∈ M m �−→ λ · mµ · ν ;

that is, the series s:
s =

∑
m∈M

(λ · mµ · ν)m .

A series s of K〈〈M〉〉 is realised, or recognised, by the representation (λ, µ, ν).
We also say that (λ, µ, ν) realises, or recognises, the series s.

Definition 14. A series of K〈〈M〉〉 is K-recognisable if it is recognised by a K-
representation. The set of K-recognisable series over M is written KRecM .

Example 9 (Example 3 cont.). Take K = N and M = {a, b}∗ . Let (λ1, µ1, ν1)
be the representation defined by

aµ1 =
(

1 0
0 1

)
, bµ1 =

(
1 1
0 1

)
, λ1 =

(
1 0

)
and ν1 =

(
0
1

)
.

For all f in {a, b}∗, we verify that λ1 · fµ1 · ν1 = |f |b ,hence the series t1 =∑
f∈A∗ |f |b f is N-recognisable.
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Remark 9. Definition 14 coincides, for K = B, with the definition of the recog-
nisable subsets of a monoid as the sets that are saturated by a congruence
of finite index. If s is a B-recognisable series over M , realised by the repre-
sentation (λ, µ, ν), then µ : M → BQ×Q is a morphism from M to a finite
monoid. The series s of B〈〈M〉〉, s =

∑
m∈M (λ · mµ · ν)m ,can be seen as the

subset s = Pµ−1 of M where P = {p ∈ BQ×Q
∣∣ λ · p · ν = 1B} . Conversely,

a morphism α from M into a finite monoid N is a morphism from M into
the monoid of Boolean matrices of dimension N (the representation of N
by translations over itself) and the B-representation that realises any subset
recognised by α easily follows.

These definitions and the following two properties of KRecM do not in-
volve multiplication in K〈〈M〉〉, and are hence valid without even requiring
that M be graded.

Proposition 15. Every finite linear combination, with coefficients in K, of
K-recognisable series over M is a K-recognisable series.

Proof. Let s and t be two K-recognisable series over M , respectively recog-
nised by the K-representations (λ, µ, ν) and (η, κ, ζ). For all k in K the series
k s is recognised by the representation (kλ, µ, ν), the series sk by the repre-
sentation (λ, µ, ν k), and the series s+t by the representation (ε, π, ξ) defined
by the following block decomposition:

ε =
(
λ η

)
, mπ =

(
mµ 0
0 mκ

)
, ξ =

(
ν
ζ

)
. ��

Let ϕ : K → L a morphism of semirings which extends to a morphism
ϕ : K〈〈M〉〉 → L〈〈M〉〉 by <sϕ, m> = <s, m>ϕ for all s in K〈〈M〉〉 and all m
in M . If (λ, µ, ν) is a representation of the series s of K〈〈M〉〉, then (λϕ, µϕ, νϕ)
is a representation of sϕ. That is:

Proposition 16. Let ϕ : K → L be a morphism of semirings. The image
under ϕ of a K-recognisable series over M is an L-recognisable series over M .

We can now get to our main point.

Theorem 6 (Kleene–Schützenberger). Let K be a strong semiring, and A
a finite alphabet. A series of K〈〈A∗〉〉 is K-rational if and only if it is K-
recognisable. That is,

KRecA∗ = KRatA∗ .

We prove the two inclusions one at a time:

KRecA∗ ⊆ KRatA∗ and KRatA∗ ⊆ KRecA∗ . (19)

Each of the inclusions is obtained from the Fundamental Theorem together
with the freeness of A∗. This is used in both cases by means of the following
result.
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Lemma 6. Let K be a semiring and A a finite alphabet. Let Q be a finite set
and µ : A∗ → KQ×Q a morphism. We set

X =
∑
a∈A

(aµ)a .

Then, for all f in A∗, we have <X∗, f> = fµ .

Proof. The matrix X is a proper series of KQ×Q〈〈A∗〉〉 and hence X∗ is defined.
We first prove, by induction on the integer n, that

Xn =
∑

f∈An

(fµ)f ,

an equality trivially verified for n = 0 , and true by definition for n = 1 . It
follows that

Xn+1 = Xn · X =
( ∑

f∈An

(fµ)f)
)
·
(∑

a∈A

(aµ)a)
)

=
∑

(f,a)∈An×A

(fµ · aµ)f a

=
∑

(f,a)∈An×A

(fa)µfa =
∑

g∈An+1

(gµ)g ,

since, for each integer n, An+1 is in bijection with An×A as A∗ is freely
generated by A. For the same reason, A∗ is the disjoint union of the An, for n
in N, and it follows, for all f in A∗, that

<X∗, f> = <X |f |, f> = fµ . ��

Proof (of Theorem 6). Each of the two inclusions (19) is proved in the form
of a property.

Property 7. If A is finite, K-recognisable series on A∗ are K-rational.

Proof. Let (λ, µ, ν) be a representation which recognises a series s; that is,
<s, f> = λ · fµ · ν , for all f in A∗. Let 〈λ, X, ν 〉 be the automaton defined
by

X =
∑
a∈A

(aµ)a .

By Lemma 6, we have

s =
∑

f∈A∗
(λ · fµ · ν)f = λ ·

( ∑
f∈A∗

(fµ)f
)
· ν = λ · X∗ · ν .

By the Fundamental T heorem, the series s belongs to the rational closure of
the entries of X . These entries are finite linear combinations of elements of A
since A is finite: s belongs to KRatA∗. ��
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Property 8. The K-rational series on A∗ are K-recognisable.

Proof. By Theorem 2, the series s is the behaviour of a proper finite K-
automaton 〈 I, X, T 〉 such that the entries of X are finite linear combinations
of elements of A (and those of I and T are scalar). We can therefore write
X =

∑
a∈A(aµ)a where aµ is the matrix of coefficients of the letter a in X .

By Lemma 6, we have

∀f ∈ A∗ <s, f> = <I · X∗ · T, f> = I · fµ · T ,

and the series s is recognised by the representation (I, µ, T ). ��
The two inclusions (19) prove the theorem. ��

4.2 Other products on recognisable series

The two products that we shall now consider, the Hadamard and shuffle prod-
ucts are defined on general series — the second one for series on a free monoid
—, but it is their effect on recognisable series which will interest us, and we
first define a product on representations.

4.2.1 Tensor product of K-representations

The tensor product of matrices has been defined in Chap. 1. Let X be a matrix
of dimension P ×P ′ and Y a matrix of dimension R×R′ (with entries in the
same semiring K); the tensor product of X by Y , written X⊗Y , is a matrix
of dimension (P × R) × (P ′ × R′) defined by

∀p ∈ P , ∀p′ ∈ P ′ , ∀r ∈ R , ∀r′ ∈ R′ X⊗Y (p,r),(p′,r′) = Xp,p′Yr,r′ .

If K is commutative, the tensor product is also. We shall need the tensor
product to be commutative under more general assumptions. We shall say that
two sub-semirings I and L of a non-commutative semiring K are commutable
if every element of I commutes with every element of L. For example, the
centre of K and any sub-semiring of K are commutable. As another example,
1T×T and T×1T are two commutable sub-semirings10 in T×T. The following
result has already been quoted (Chap. 1, Th. 17)

Lemma 7. Let X, Y , U and V be four matrices with entries in K, respectively
of dimension P×Q, P ′×Q′, Q×R and Q′×R′, and such that all the entries
of Y commute with those of U . Then

(X⊗Y ) · (U⊗V ) = (X · U)⊗(Y · V ) .

10 On the other hand, we shall not say that two matrices X and Y are commutable
to mean that all the entries of X commute with those of Y ; this would be too
easily confused with the fact that the two matrices commute, that is, X Y = Y X.
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It then follows:

Proposition 17 (Tensor product of representations). Let I and L be
two commutable sub-semirings of K. Let M and N be two arbitrary monoids
and µ : M → IQ×Q and κ : N → LR×R two representations. The map µ⊗κ,
defined for all (m, n) in M×N by

(m, n) [ µ ⊗ κ] = mµ⊗nκ

is a representation of M×N in K(Q×R)×(Q×R) .

Proof. For all (m, n) and (m′, n′) in M×N , we have:(
(m, n) [ µ ⊗ κ]

) · ((m′, n′) [ µ ⊗ κ]
)

=
(
mµ⊗nκ

) · (m′µ⊗n′κ
)

=
(
mµ · m′µ

)⊗(nκ · n′κ
)

= (mm′)µ⊗(nn′)κ = (mm′, nn′) [ µ ⊗ κ] ,

since, under the proposition’s assumptions, all the entries of m′µ commute
with those of nκ. ��

4.2.2 Hadamard product

The Hadamard product is to series (sets with multiplicity) what intersection is
to sets, which only really makes sense if the semiring of coefficients is commu-
tative. In the same way that the recognisable subsets of an arbitrary monoid
are closed under intersection, we have the following.

Theorem 7. Let K be a commutative semiring and M an arbitrary monoid.
Then KRec M is closed under Hadamard product.

Under the more precise assumptions of Proposition 17, we can state a more
general result.

Theorem 8 (Schützenberger). Let I and L be two commutable sub-
semirings of K and M a monoid. The Hadamard product of an I-recognisable
series over M and a L-recognisable series over M is a K-recognisable series
over M .

More precisely, if (λ, µ, ν) recognises s and (η, κ, ζ) recognises t, then s	t
is recognised by (λ⊗η, µ ⊗ κ, ν⊗ζ) .

Proof. First note that, since the map m �→ (m, m) is a morphism from M
to M ×M , Proposition 17 implies that the map m �→ mµ ⊗ mκ is also a
morphism, and we also write it µ ⊗ κ .

Let s be a series over M recognised by the I-representation (λ, µ, ν) and t
be a series over M recognised by the L-representation (η, κ, ζ). By definition
we have, for all m in M ,
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<s	t, m> = (λ · mµ · ν) (η · mκ · ζ) = (λ · mµ · ν)⊗(η · mκ · ζ) ,

the second equality expressing the product of two coefficients of K as the
tensor product of two 1×1 matrices. Under the assumptions of the theorem,
we can apply Lemma 7 (three times) and obtain

<s	t, m> = (λ⊗η) · (mµ⊗mκ) · (ν⊗ζ) = (λ⊗η) · (m[ µ ⊗ κ]) · (ν⊗ζ) .

Since, again according to these assumptions, µ ⊗ κ is a K-representation, the
series s	t is recognisable, recognised by the stated representation. ��

As a consequence of Theorem 6, the Hadamard product of two K-rational
series on A∗ is a K-rational series (if K is a commutative semiring). More-
over, the tensor product of representations of A∗ translates directly into a
construction on K-automata over A∗ whose labels are linear combinations of
letters of A, which is the natural generalisation of the cartesian product of
automata, and which we can call the Hadamard product of K-automata.

Example 10. The N-automaton C2 of Figure 7 is the Hadamard product of the
N-automaton C1 of Figure 2 by itself. Therefore, for every f in A∗, it holds
f|||C2||| = f

2
.

4.2.3 Shuffle product

We now suppose that M is a free monoid A∗ and that K is commutative
(usually K = N but that is not required). The shuffle product (or Hurwitz
product) of two words of A∗, and then by linearity of two series in K〈〈A∗〉〉,
has been defined at Chap. 1, mostly for ancillary purpose. Let us recall this
definition the interest of which goes far beyond the computations it was used
for so far.

Definition 15. For all f and g in A∗, the shuffle of f and g, written f � g ,
is an homogeneous polynomial of K〈A∗〉 defined by induction on |f | + |g| by

∀f ∈ A∗ f � 1A∗ = 1A∗ � f = f ,
∀f, g ∈ A∗ , ∀a, b ∈ A f a � g b = (f a � g) b + (f � g b) a .

The shuffle is extended ‘by linearity’ to K〈〈A∗〉〉; that is,

∀s, t ∈ K〈〈A∗〉〉 s � t =
∑

f,g∈A∗
<s, f><t, g>f � g .

which is defined since the family of polynomials f � g for f and g in A∗ is
locally finite.

Example 11. ab � ab = 4aabb + 2abab ,
ab � ba = abab + 2abba + 2baab + baba and (1a∗ + a) � a∗ = [a∗]2 .
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Shuffle is an associative, commutative and continuous product and makes
of K〈〈A∗〉〉 a commutative K-algebra. The shuffle of two words is characterised
by the following.

Proposition 18. Let χ : A∗ → K〈A∗×A∗〉 be the morphism (of monoids)
defined by aχ = (a, 1A∗) + (1A∗ , a) , for all a in A∗. It then follows that

∀h ∈ A∗ hχ =
∑

f,g∈A∗
<f � g, h> (f, g) . ��

Theorem 9. Let K be a commutative semiring. The shuffle of two K-recognisable
series on A∗ is a K-recognisable series.

Proof. Let s and t be K-recognisable series on A∗, respectively recognised
by the K-representations (λ, µ, ν) and (η, κ, ζ) . For all h in A∗ the definition
yields

<s � t, h> =
∑

f,g∈A∗

(
<s, f><t, g>

)
<f � g, h>

=
∑

f,g∈A∗

(
(λ · fµ · ν) (η · gκ · ζ)

)
<f � g, h>

=
∑

f,g∈A∗

(
(λ⊗η) · ((f, g)[ µ ⊗ κ]

) · (ν⊗ζ)
)

<f � g, h>

= (λ⊗η) · ((hχ)[ µ ⊗ κ]
) · (ν⊗ζ) by Proposition 18 .

Since, by the theorem’s assumptions, χ ◦ [ µ ⊗ κ] is a K-representation, the
series s � t is recognisable. ��

A consequence of Theorem 6 again, the shuffle of two K-rational series
on A∗ is a K-rational series (if K is a commutative semiring). As for the
Hadamard product, the construction on representations that underlies the
proof of Theorem 9 translates into a construction on K-automata over A∗,
which we can call the shuffle product of K-automata.

Formally, if A′ = 〈Q′, A, E′, I ′, T ′ 〉 and A′′ = 〈Q′′, A, E′′, I ′′, T ′′ 〉 are
two proper K-automata over A∗ whose labels are linear combinations of letters
of A, the shuffle of |||A′||| and |||A′′||| is realised by the K-automaton written A′�A′′

and defined by

A′ � A′′ = 〈Q′×Q′′, A, E, I ′⊗I ′′, T ′⊗T ′′ 〉 ,

where the set E of transitions is described by

E =
{(

(p′, p′′), k′ a, (q′, p′′)
) ∣∣ (p′, k′ a, q′) ∈ E′ and p′′ ∈ Q′′}⋃ {(

(p′, p′′), k′′ a, (p′, q′′)
) ∣∣ p′ ∈ Q′ and (p′′, k′′ a, q′′) ∈ E′′} .

Example 12. The Z-automaton W1 of Figure 6 is the shuffle product of the
obvious two state Z-automata that respectively accept (ab)∗ and (−ab)∗. The
equivalence with V1 in the same figure yields the identity

(ab)∗ � (−ab)∗ = (−4a2b2)∗ . (20)
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4.3 Series on a product of monoids

Series on a (Cartesian) product of monoids is a major subject in itself and
their study could occupy a whole chapter of this book: they are the behaviour
of transducers with multiplicity, of interest both from a theoretical and appli-
cations point of view (cf. Chap. 6, 11 and 14 for instance). Here we confine
ourselves to few definitions and results stemming from the canonical isomor-
phisms between several semiring of series and with the aim of being able to
state (and to prove) results about the image of series under morphisms and
of comparing the families of rational and recognisable series.

4.3.1 The canonical isomorphisms

Polynomials or series in several (commutative) variables can be ordered with
respect to one or another variable. It is a purely formal exercise to verify that
these manipulations generalise to polynomials, or to series, over a product of
monoids.

The algebras K〈〈M〉〉 and K〈〈N〉〉 are canonically isomorphic to two sub-K-
algebras of K〈〈M×N〉〉: we identify m with (m, 1N) and n with (1M , n). This
identification enables us to build the two canonical isomorphisms.

Proposition 19. The three K-algebras

K〈〈M×N〉〉 , [K〈〈M〉〉] 〈〈N〉〉 and [K〈〈N〉〉] 〈〈M〉〉
are isomorphic. Under these isomorphisms the three sub-K-algebras

K〈M×N〉 , [K〈M〉] 〈N〉 and [K〈N〉] 〈M〉
correspond. ��
Remark 10. Modulo this canonical embedding and if K is commutative, then
every element of K〈〈M〉〉 commutes with every element of K〈〈N〉〉 in K〈〈M×N〉〉.
Definition 16. Let s be in K〈〈M〉〉 and t be in K〈〈N〉〉. The tensor product
of s and t, written s ⊗ t , is the series of K〈〈M×N〉〉 defined by

∀(m, n) ∈ M×N <s ⊗ t, (m, n)> = <s, m> <t, n> .

This definition allows the weighted generalisation of a result usually cred-
ited to Myhill.

Proposition 20. Suppose that K is commutative. A series s of K〈〈M ×N〉〉
is recognisable if and only if there exists a finite family {ri}i∈I of series
of KRecM and a finite family {ti}i∈I of series of KRecN such that

s =
∑
i∈I

ri ⊗ ti .
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Proof. If r is recognised by the representation (λ, µ, ν), the map (m, n) �→ mµ
is also a morphism and the series r′ of K〈〈M×N〉〉 defined by <r′, (m, n)> =
λ · mµ · ν = <r, m> is recognisable. Likewise, if t ∈ KRec N , the series t′

of K〈〈M×N〉〉 defined by <t′, (m, n)> = <t, n> is recognisable. Definition 16
shows that

r ⊗ t = r′ � t′ ,

which is thus recognisable and Proposition 15 — hence we need K to be
commutative — implies that the condition is sufficient.

Conversely, suppose that s is recognised by (λ, µ, ν), a representation
of M ×N of dimension Q. The map µ′ : M → KQ×Q defined by mµ′ =
(m, 1N )µ is a morphism. For each q in Q, let rq be the series defined by

∀m ∈ M <rq, m> = [λ · mµ′]q ,

which is a recognisable series of K〈〈M〉〉 . Likewise, µ′′ : N → KQ×Q defined
by nµ′′ = (1M , n)µ is a morphism and tq defined by

∀n ∈ N <tq, n> = [nµ′′ · ν]q ,

is a recognisable series of K〈〈N〉〉 . Since for all (m, n) of M×N we have

λ · (m, n)µ · ν =
∑
q∈Q

[λ · mµ′]q [nµ′′ · ν]q ,

it follows that

s =
∑
q∈Q

rq ⊗ tq . ��

4.3.2 Rational series in a product

The Fundamental Theorem of (K-)automata for series in K〈〈M×N〉〉 directly
yields (weighted and generalised version of a theorem by Elgot and Mezei
[15]):

Proposition 21. Let E and F be generating sets of M and N respectively.
A series of K〈〈M×N〉〉 is rational if and only if it is the behaviour of a proper
finite K-automaton whose coefficients are K-linear combinations of elements
of (E×1N) ∪ (1M×F ). ��
Proposition 22. The canonical isomorphism from K〈〈M×N〉〉 to [K〈〈N〉〉] 〈〈M〉〉
sends KRat (M×N) to [KRatN ]RatM .

Proof. From the inclusion

K〈N〉 ⊆ K〈M×N〉 ⊆ KRat (M×N) ,
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we deduce successively, by liberal use of the canonical embeddings,

KRatN ⊆ KRat (M×N) ,
[KRatN ]〈M〉 ⊆ KRat (M×N) ,

[KRatN ]RatM ⊆ KRat (M×N) .

Conversely, let r be in KRat (M×N) . There exists a proper K-automaton
〈 I, X, T 〉 such that r = I ·X∗ ·T and such that the coefficients of X are finite
K-linear combinations of elements of (M×1)∪(1×N) . We write X = Y +Z ,
in such a way that the coefficients of Y are linear combinations of elements
of M×1 and those of Z are linear combinations of elements of 1×N (with co-
efficients in K). The series r is the result of the automaton 〈 I, Z∗ · Y, Z∗ · T 〉
whose coefficients are linear combinations of elements of M×1, with coeffi-
cients in 1 × KRatN . ��

The specialisation of this proposition when M is a free monoid gives the
weighted version of what is often known as the ‘Kleene-Schützenberger The-
orem for rational relations’. We shall state it after the definition of weighted
relations.

4.3.3 Weighted relations

We first need a few more definitions and notation. We write Kc for the centre
of K, that is, the set of elements of K which commute with every element of K

— Kc is a sub-semiring of K. In any case, 1K belongs to Kc, which is thus
never empty.

The scalar product of two series s and t in K〈〈M〉〉, written <s, t> is defined
by

<s, t> =
∑

m∈M

<s, m><t, m> ,

which may or may not be defined since the family {<s, m><t, m> | m ∈ M}
is not necessarily summable. It is defined if s or t is a polynomial. The iden-
tification of m with its characteristic series m makes this notation consistent
with the notation <s, m> for the coefficient of m in s. Even if K is not com-
mutative, but if s or t belong to Kc〈〈M〉〉 , we have <s, t> = <t, s> . In this
case, the scalar product is even compatible with left and right multiplication
by arbitrary elements of K:

k<s, t> = <k s, t> ,
<s, t>k = <t, s>k = <t, sk> = <sk, t> .

Definition 17. A K-relation from M to N , written θ : K〈〈M〉〉 → K〈〈N〉〉 , or
more often θ : M → N , is any series θ of [Kc〈〈N〉〉] 〈〈M〉〉.

The image of every m in M under θ is the series <θ, m> of K〈〈N〉〉, written
more simply mθ.
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The image of every s in K〈〈M〉〉 under θ, denoted sθ, is then obtained ‘by
linearity’. It is defined if and only if the family {<s, m><θ, m> | m ∈ M} is
a summable family of series of K〈〈N〉〉 and is its sum.

The graph θ̂ of a K-relation θ is the series of Kc〈〈M×N〉〉 which corresponds
to θ under the canonical isomorphism. The inverse of θ, namely θ−1, is the
K-relation from N to M , and hence a series of [Kc〈〈M〉〉] 〈〈N〉〉 , which has the
same graph θ̂ as θ . It then holds

∀(m, n) ∈ M×N <mθ, n> = <θ̂, (m, n)> = <m, nθ−1> . (21)

Remark 11. Instead of assuming that the semiring of coefficients is commuta-
tive, we have ‘only’ imposed the condition that the coefficients of the relation,
θ̂, belong to the centre of this semiring. This could seem a rather weak gen-
eralisation; in fact it allows us first and foremost to consider, as K-relations
from M to N , the characteristic relations of relations from M to N , even if K

is not commutative.

Example 13. For every series t in Kc〈〈M〉〉, and in particular for every charac-
teristic series t, the Hadamard product with t (or K-intersection with t) is a
K-relation from M to itself, written ιt: sιt = s	t and sιt is defined for all s
in K〈〈M〉〉.

It is then natural to say that a K-relation from M to N is rational if its
graph is a Kc-rational series of K〈〈M×N〉〉. And the announced specialisation
of Proposition 22 then reads:

Corollary 4. A K-relation θ from A∗ to N is rational if and only if there
exists a (KcRatN)-representation of A∗, namely (λ, µ, ν), such that, for all f
in A∗, fθ = λ · fµ · ν , that is:

KcRat (A∗×N) ∼= [KcRatN ]RecA∗ . ��
It follows from (21) that the image sθ of a series s in K〈〈M〉〉 by a K-

relation θ from M to N is defined if and only if <s, nθ−1> is defined for
every n in N , and we have

<sθ, n> = <s, nθ−1> .

Hence the following definition.

Definition 18. We say that a K-relation θ : M → N is of finite co-image
if nθ−1 is a polynomial for all n.

The image of any series by a relation of finite co-image is always defined,
and this is the case that we shall only consider here. Regulated relations which
were defined by Jacob starting from their representations as in Corollary 4
are relations of finite co-image; they were popularised by a number of authors
inspired by Jacob’s work (cf. Chap. 6).

Proposition 23. Let M and N be two graded monoids. A K-relation θ : M →
N with finite co-image is continuous. ��
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4.3.4 Morphic image of recognisable and rational series

A K-relation θ : M → N is multiplicative if its restriction to M is a morphism
to K〈〈N〉〉 viewed as a multiplicative monoid. The definition of K-relations
implies in fact that θ is a morphism from M to Kc〈〈N〉〉. In particular, the
characteristic relation θ of a morphism θ from M to N is a multiplicative
K-relation.

We begin with a weighted generalisation of a theorem on recognisable sets.

Proposition 24. Let θ : M → N be a morphism of monoids and t a K-
recognisable series on N . Then tθ−1 is a K-recognisable series on M .

Proof. By assumption, there exists (λ, µ, ν), a K-representation of N , such
that for all n in N , <t, n> = (λ · nµ · ν) . Whence, for all m in M ,

<tθ−1, m> = <t, mθ> = λ · (mθ)µ · ν .

Thus, the K-representation of M (λ, θµ, ν) recognises the series tθ−1. ��
The hypothesis that the coefficients of a K-relation are taken in Kc allows

then to establish the following.

Proposition 25. If θ : M → N is a multiplicative K-relation, then θ is a
morphism from the K-algebra of K〈M〉 to K〈〈N〉〉. ��

Let M and N be two graded monoids. Let θ : M → N be a multiplicative
K-relation; if, for all m in M , mθ is a proper series of K〈〈N〉〉, then θ is of finite
co-image, hence is defined on all of K〈〈M〉〉 and is continuous. In particular, a
monoid morphism θ : M → N is continuous if mθ 
= 1N for all m in M and
then the K-relation θ is a continuous morphism of K-algebras from K〈〈M〉〉
to K〈〈N〉〉. It follows that if s is in K〈〈M〉〉, s∗ is defined if and only if (sθ)∗ is
defined and we have (s∗)θ = (sθ)∗ . And it then holds:

Theorem 10. Let M and N be graded monoids and θ : M → N a continuous
morphism of monoids.
(i) If s ∈ KRatM , then sθ ∈ KRatN .
(ii) If θ is surjective and t ∈ KRatN , then there exists s ∈ KRatM such
that sθ = t . ��
Example 14. Let α : A∗ → M be a surjective morphism; a set R of A∗ is a
cross-section of A∗ for α if α is injective over R and Rα = M , that is, if
M = (R)α . A monoid M is rationally enumerable if such an R exists that is
a rational subset of A∗.

It easily comes that M is rationally enumerable if and only if it is an
unambiguous rational subsets of itself: M ∈ URatM , that is, M ∈ NRatM
and then M ∈ KRatM for any K.

We prove a last lemma before the result we are aiming at.
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Lemma 8. Let θ : M → N be a function and s a K-series on N . We have
(cf. diagram in Figure 9)

θ ιs = ιsθ−1 θ .

Proof. For every m in M we have

(mιsθ−1)θ = (sθ−1	m)θ = (<sθ−1, m>m)θ =

<s, mθ>mθ = s	mθ = (mθ)ιs . ��

M M

N N

θ θ

ιs

ι(s)θ−1

Fig. 9. Lifting of K-intersection with s

Theorem 11. Let I and L be two commutable sub-semirings of K, t in
LRatN and s in IRec N . Then, the Hadamard product of t and s is a K-
rational series on N .

Proof. As N is finitely generated there exists a finite alphabet A and a sur-
jective continuous morphism θ : A∗ → N . By Theorem 10(ii) there exists a
series u in LRatA∗ such that

uθ = t .

The coefficients of u commute with those of s, and hence with those of sθ−1.
Lemma 8 allows us to rewrite the equality s	t = s	uθ as

s	t =
[
sθ−1	u

]
θ . (22)

Proposition 24 ensures that sθ−1 is I-recognisable (on A∗), Theorem 8 that
sθ−1 	 u is K-recognisable, hence K-rational, and finally (22) and Theo-
rem 10(i) that s	t is K-rational on N . ��
Corollary 5. If M is rationally enumerable, then KRecM ⊆ KRatM .

Proof. By hypothesis, M ∈ KRatM for any K We have s�M = s for all s
in K〈〈M〉〉 and we apply Theorem 11. ��

Corollary 5 is the weighted generalisation of a theorem by McKnight ([33]),
Theorem 11 the one of a classical result on subsets of a monoid. As for subsets
also, the morphic image of a recognisable series is not necessarily recognisable,
the inverse morphic image of a rational series is not necessarily rational.

Draft of a chapter for the HANDBOOK OF WEIGHTED AUTOMATA Not to be circulated 19-Sep-2008



Rational and recognisable series 45

5 Series over a free monoid

So far, we have developed the theory of rational series under the assumption
that M is graded (so that we knew how to define star). In our presentation,
Kleene-Schützenberger Theorem and recognisable series appeared as a last
touch added to the Fundamental Theorem of Automata in the case of free
monoids. We now require M to be a free monoid and change our point of view:
rational and recognisable series coincide and somehow recognisable series and
their representations become the main subject.

The whole thing takes an algebraic turn. We first give another characteri-
sation of recognisable series, and then, under the hypothesis that the semiring
of weights is a field, we develop the theory of reducion (that is, minimisation)
of representations. In a third subsection, we review a number of applications
of this reduction theory — and first of all, the decidability of equivalence —
which, in many instances, do not apply only to the case of weights in a field
but also in any subsemiring of a field.

5.1 The finite dimension theorem

Representations define recognisable series; we first show how, by means of the
quotient operation, we can recover a representation from a series when it is
recognisable. This is an abstract view since a series is an infinite object; we
then give an effective implementation of this result, starting from a rational
expression that denotes a rational series, and this is another proof of one
direction of Kleene-Schützenberger Theorem.

5.1.1 Characterisation of recognisable series

The (left) quotient of a series is the generalisation to series of the (left) quotient
of a subset of a monoid (a free monoid in this case).

The free monoid A∗ acts by quotient on K〈〈A∗〉〉: for all f in A∗ and all
series s in K〈〈A∗〉〉, the series f−1s is defined by

f−1s =
∑

g∈A∗
<s, f g>g , that is, ∀g ∈ A∗ <f−1s, g> = <s, f g> ,

and in particular ∀f ∈ A∗ <f−1s, 1A∗> = <s, f> .
(23)

As the definition says, the quotient is an action, that is,

∀f, g ∈ A∗ (f g)−1s = g−1
[
f−1s

]
,

and for every given f , the operation s �→ f−1s is an endomorphism of the
K-module K〈〈A∗〉〉: it is additive:

f−1(s + t) = f−1s + f−1t ,
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and commutes with the exterior multiplications of K on K〈〈A∗〉〉:
f−1(k s) = k (f−1s) and f−1(sk) = (f−1s)k .

Moreover, it is continuous. These three properties ensure that the operation
of quotient by f is entirely defined on K〈〈A∗〉〉 by its values on A∗.

Example 15. Let s2 = (a∗)2 =
∑

k∈N
(k+1)ak in NRat a∗. For every integer n,

we have:
(an)−1s2 =

∑
k∈N

(n + k + 1)ak = s2 + na∗ .

All quotient of s2 are distinct.

Example 15 shows that, in general, and unlike the case for (recognisable)
languages, the family of quotients of a rational, and thus recognisable, series is
not necessarily finite. On the other hand, and despite its simplicity, it exhibits
the property that we seek: of course there are infinitely many quotients, but
they can all be expressed as the linear combination of a finite number of
suitably chosen series.

Definition 19. A subset U of K〈〈A∗〉〉 is called stable if it is closed under
quotient; that is, for all s in U and all f in A∗, f−1s is still in U .

Theorem 12. A series on A∗ with coefficients in K is K-recognisable if and
only if it is contained in a stable submodule of K〈〈A∗〉〉 of finite type.

To allow later references to parts of the proof of this result, it is split into
more precise properties and definitions.

Definition 20. With every K-representation A = (λ, µ, ν) of dimension Q
we associate a morphism of K-modules ΦA : KQ −→ K〈〈A∗〉〉 by

∀x ∈ KQ (x)ΦA = |||(x, µ, ν)||| =
∑

f∈A∗
(x · fµ · ν)f .

Proposition 26. If s is a series realised by A = (λ, µ, ν) , then Im ΦA is a
stable (finitely generated) submodule of K〈〈A∗〉〉 that contains s.

Proof. The submodule Im ΦA is finitely generated since KQ is, is stable since
for all f in A∗ and all x in KQ we have

f−1 [(x)ΦA] = (x · fµ)ΦA ,

and contains s = (λ)ΦA . ��
Proposition 27. Let U be a stable submodule of K〈〈A∗〉〉 generated by G =
{g(1), g(2), . . . , g(n)} . Then every series in U is a K-recognisable series of K〈〈A∗〉〉,
realised by a representation of dimension n.
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Proof. The set G canonically defines a linear map from Kn onto U :

x = (x1, x2, . . . , xn) �−→ x · G = x1g
(1) + x2g

(2) + · · · + xng(n) .

A series u belongs to U means that there exists x in Kn such that u = x ·G .
If U is stable, for every a in K, and every i, a−1g(i) belongs to U and

there exists a vector m(i) in K (at least one) such that a−1g(i) = m(i) · G .
Let aµ be the n×n-matrix whose i-th row is m(i). As the quotient by a is
a linear map, for any u in U , u = x · G it holds a−1u = (x · aµ) · G . These
matrices aµ, for a in A, define a representation of A∗ and as the quotient is
an action of A∗, for every f in A∗ it holds f−1u = (x · fµ) · G .

From (23) follows then <u, f> = <f−1u, 1A∗> = <(x·fµ)·G, 1A∗> and u is
realised by the representation (x, µ, <G, 1A∗>) where <G, 1A∗> denotes the
(column) vector (<g(1), 1A∗>, <g(2), 1A∗>, . . . , <g(n), 1A∗>) . ��

5.1.2 Derivation of rational K-expressions

The derivation of rational K-expressions is the lifting to the level of expres-
sions of the quotient of series and will enable us to effectively implement
Theorem 12: the derived terms of an expression denote a set of generators of
a stable submodule that contains the series denoted by the expression. It will
give us the weighted generalisation of Antimirov’s construction on rational ex-
pressions [1]; this is another example where taking multiplicities into account
yield better understanding of constructions and results on languages.

K-derivatives

For the rest of this subsection, addition in K is written ⊕ to distinguish it
from the + operator in expressions. The addition induced on K〈〈A∗〉〉 is also
written ⊕. The set of left linear combinations of K-expressions with coefficients
in K, or polynomials of K〈K RatEA∗〉, is a left K-module on K:

kE ⊕ k′ E′ ≡ k′ E′ ⊕ kE and kE ⊕ k′E ≡ [k ⊕ k′] E . (BK)

In the following, [k E] or k E is a monomial whereas (k E) is an expression.
As it is the case in general for modules, there is no multiplication de-

fined on K〈K RatEA∗〉. And an external right multiplication of an element
of K〈K RatEA∗〉 by an expression and by a scalar is needed. This operation
is first defined on monomials and then extended to polynomials by linearity.

([k E] · F) ≡ k (E · F) ([k E] k′) ≡ k (E k′)
([E ⊕ E′] · F) ≡ (E · F) ⊕ (E′ · F) ([E ⊕ E′] k) ≡ (E k) ⊕ (E′ k)

This multiplication on K〈K RatEA∗〉 is not associative — since the product
operator in expression is not — but is consistent with interpretation: the series
denoted by the left hand sides and right hand sides are equal.
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Definition 21. Let E be in K RatEA∗ and let a be in A. The K-derivative of E

with respect to a, denoted by
∂

∂a
E, is a polynomial of rational expressions with

coefficients in K, defined inductively by the following formulas.

∂

∂a
0 =

∂

∂a
1 = 0 ,

∂

∂a
b =

{
1 if b = a

0 otherwise

∂

∂a
(k E) = k

∂

∂a
E ,

∂

∂a
(E k) =

([
∂

∂a
E

]
k

)
∂

∂a
(E+F) =

∂

∂a
E ⊕ ∂

∂a
F (24)

∂

∂a
(E · F) =

([
∂

∂a
E

]
· F
)
⊕ c(E)

∂

∂a
F (25)

∂

∂a
(E∗) = c(E)∗

([
∂

∂a
E

]
· (E∗)

)
(26)

The derivative of a polynomial of expressions is defined by linearity:

∂

∂a

(⊕
i∈I

ki Ei

)
=
⊕
i∈I

ki
∂

∂a
Ei (27)

Implicitely, the (polynomials of) expressions are reduced with trivial identities;
for instance:

∂

∂a
E = 1 =⇒ ∂

∂a
(E · F) = F ⊕ c(E)

∂

∂a
F.

Notice that Equation (26) is defined only if (E∗) is a valid expression. The
K-derivative of an expression with respect to a word f is defined by induction
on the length of f :

∀f ∈ A∗ , ∀a ∈ A
∂

∂fa
E =

∂

∂a

(
∂

∂f
E

)
. (28)

The definition of K-derivatives of K-expressions is consistent with that of
quotient of series, as expressed by the following.

Proposition 28. ∀E ∈ K RatEA∗ , ∀f ∈ A+ ||| ∂

∂f
(E)||| = f−1|||E||| . ��

The derived term automaton

Definition 22. The set TD(E) of true derived terms of an expression E
in K RatEA∗ is inductively defined by the following rules:
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TD(0) = TD(1) = ∅ , ∀a ∈ A TD(a) = {1}
∀k ∈ K , TD(k E) = TD(E) , TD(E k) =

⋃
K∈TD(E)

(K k)

TD(E + F) = TD(E) ∪ TD(F)

TD(E · F) =

 ⋃
K∈TD(E)

(K · F)

 ∪ TD(F)

TD(E∗) =
⋃

K∈TD(E)

(K · (E∗))

It follows from the definition that TD(E) is a finite set of unitary mono-
mials of K〈K RatEA∗〉, whose cardinal is smaller than or equal to �(E). The
reason for the two Definition 21 and Definition 22 which may look redundant
will be explained below.

The expression E itself does not belong necessarily to TD(E) and we define
the set of derived terms of E to be: D(E) = TD(E) ∪ {E} . A mechanical
induction on the depth of the expressions establishes then the following.

Theorem 13. Let D(E) = {K1, ..., Kn} be the set of derived terms of an
expression E in K RatEA∗. For every letter a in A, there exist a n×n-matrix aµ
with entries in K such that

∀i ∈ [n]
∂

∂a
Ki =

⊕
j∈[n]

aµi,j Kj . ��

From (28) it then follows, by induction on the length of words:

Corollary 6. The K-derivative of any expression E in K RatEA∗ with respect
to every word f in A∗ is a linear combination of derived terms of E. ��

The statement of Theorem 13 is in itself the definition of a K-representation
AE = (λ, µ, ν) of dimension D(E) if we add

λi =

{
1K if Ki = E ,

0K otherwise ,
and νj = c(Kj) .

We also write AE for the K-automaton 〈λ, X, ν 〉 where X =
⊕

a∈A aµa
and call it the derived term automaton of E.

Proposition 29. Let E be in K RatEA∗. Then |||AE||| = |||E||| . ��
Derivation is thus another mean to build an automaton from an expression,

different from the one we have seen in the course of the proof of Theorem 2 and
that yielded the standard automaton of the expression. The two constructions
are related by the following, which is the weighted generalisation of a theorem
by Champarnaud and Ziadi [10].
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Theorem 14 ([31]). Let E be in K RatEA∗. Then SE is a K-covering of AE.
��

Remark 12. Definition 21 and Definition 22 are both based on an induction on
the depth of the expression and then reunited by Theorem 13 and Corollary 6.
It seems that it could be possible, and more natural, to define the derived
terms of E as the monomials that appear in the K-derivatives of E.

This is not always true if K is not a positive semiring: some derived terms
may never appear in a K-derivative — as it can be observed for instance with
the Z-expression E5 = (1−a)a∗ (cf. Figure 10). And with such an utilitarian
definition of derived terms, Theorem 14 would not hold anymore.

0

1

2a

−a

a

a

(a) The standard automaton: SE5

E5 a∗

a

(b) The derived term automaton: AE5

Fig. 10. Two Z-automata for E5

5.2 Reduced representations

We now suppose that K is a field, not necessarily commutative, hence a skew
field, or division ring. The preceding considerations about quotients of series
will take on, we might say, a new dimension since the ring of series K〈〈A∗〉〉 is
not only a K-algebra, but a left and right K-vector space, and the notion of
dimension of subspaces will give us a new invariant.

5.2.1 Rank of a series

Definition 23. Let K be a division ring. The rank of a series s of K〈〈A∗〉〉 is
the dimension of the subspace of K〈〈A∗〉〉 generated by the (left) quotients of s.

In this setting, and with no further ado, Theorem 12 becomes:

Theorem 15. A series s over A∗ with coefficients in a division ring is recog-
nisable if and only its rank is finite.

From Definition 20 and Proposition 26 follows that if s is a series realised
by a K-representation A = (λ, µ, ν) of dimension n, the rank of s is smaller
than or equal to to dim(Im ΦA) which is smaller than or equal to n, that is,
the rank of a recognisable series s is smaller than, or equal to, the dimension
of any representation that realises it.
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Definition 24. A representation of a recognisable series s is reduced if its
dimension is minimal, equal to the rank of s.

From Proposition 27 follows that with every base of the subspace generated
by the quotients of s is associated a reduced representation. The reduced
representations will be characterised by means of the following definition.
With every K-representation A = (λ, µ, ν) of dimension Q, we associate the
morphism of K-modules ΨA : K〈A∗〉 −→ KQ defined by

∀f ∈ A∗ (f)ΨA = λ · fµ .

Theorem 16. A K-representation A = (λ, µ, ν) is reduced if, and only if,
ΨA is surjective, and ΦA injective.

Proof. Let s be the series realised by A. The morphism

ΨA ◦ ΦA : K〈A∗〉 −→ K〈〈A∗〉〉 is such that (f)[ΨA ◦ ΦA] = f−1s

for every f in A∗ and Im ΨA ◦ ΦA is the subspace generated by the quotients
of s. For the dimension of ImΨA ◦ ΦA be equal to n, the dimension of A, it
is necessary, and sufficient, that the dimension of both Im ΨA and Im ΦA be
equal to n. The second equality holds if, and only if, the dimension of Ker ΦA
is zero. ��
Remark 13. The significance of the map ΨA goes beyond the case of weights
taken in a field. Without linearisation, K = B is the reachable set of A. If
K = B , (A∗)ΨA is a set of subsets of states of A, namely the set of states of
the determinised automaton of A (by the so-called subset construction).

5.2.2 The reduction algorithm

It is not enough to know that reduced representations exist and to characterise
them. We want to be able to effectively compute them and establish the
following.

Theorem 17. A reduced representation of a recognisable series s is effectively
computable from any representation that realises s with a procedure whose
complexity is cubic in the dimension of the representation.

For the rest of this section, let A = (λ, µ, ν) be a K-representation of A∗

of dimension n (that realises the series s = |||A||| ).

Word base

The effective computation from A of a reduced representation of s is based
on one definition and two propositions that are related but whose scope and
aim are nevertheless rather different.
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Definition 25. We call word base for A a prefix-closed subset P of A∗ such
that the set (P )ΨA = {λ · pµ | p ∈ P} is a base of ImΨA .

Proposition 30. Word bases for A do exist.

Proof. If λ = 0, Im ΨA is the null vector space, of dimension 0 and the empty
set (which is prefix-closed!) is a word base. Assuming λ is non-zero, the family
of prefix-closed subsets P of A∗ such that {λ · pµ | p ∈ P} is a free subset
of Kn is non empty since it contains at least the singleton {1A∗} . Every such
subset contains at most k = dim(Im ΨA) elements and a word base exactly k
elements. Word bases are the maximal elements of that family. ��

In the sequel, we do not consider the trivial case λ = 0 anymore.

Proposition 31. With every word base P for A is associated a representation
A′ = (λ′, µ′, ν′) of dimension m — effectively computable from P and A —
which is conjugate to A and with the property that ΨA′ is surjective. Moreover,
if ΦA is injective, so is ΦA′ .

Proof. Let P = {p1 = 1A∗ , p2, . . . , pm} be a word base for A and X the
m×n-matrix (with entries in K) whose i-th row is λ · (pi)µ . Let us denote
ν′ = X · ν and λ′ the (row) m-vector whose entries are all 0 but the first one
which is 1 — thus λ′ · X = λ .

For every a in A, let aµ′ be the m×m-matrix (with entries in K) whose
i-th row is the vector of coordinates of λ · (pia)µ in the base λ · (P )µ , that
is,

λ · (pia)µ =
j=m∑
j=1

(aµ′)i,j (λ · pjµ) . (29)

Since λ · (pia)µ = (λ · piµ) · aµ , the set of equations (29) for all i may be
rewritten in a more compact way as

aµ′ · X = X · aµ

and A′ is conjugated to A by X .
If P is not a word base for A′, it exists m coefficients αi such that∑i=m
i=1 αi (λ′ · piµ

′) = 0 but multiplying this equality on the left by X yields∑i=m
i=1 αi (λ · piµ) = 0 a contradiction (with the fact that P is a word base

for A).
If ΦA′ is not injective, there exists a non zero vector y in Km such that

y ·fµ′ ·ν′ = 0 and thus (y ·X) ·fµ ·ν = 0 for every f in A∗. If ΦA is injective,
then y ·X = 0 and thus y = 0 for the same reason as above, a contradiction.

��
Remark 14 (Remark 13 cont.). Let D be the determinisation of a Boolean
automaton A of dimension Q by the subset construction. If we form the
(Boolean) matrix X whose rows are the states of D (vectors of dimension Q),
then D is conjugate to A by X .
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Demonstration of the reduction theorem

We first observe that Proposition 31 has obviously a dual formulation, which
we rather state on the transpose of the representation A, tA = ( tν , tµ , tλ )
where a tµ = t(aµ) for every a in A and it comes f tµ = t( tf µ) for
every f in A∗.

Lemma 9. If Ψ tA is surjective, then ΦA is injective.

Proof. If xΦA = 0 then x · fµ · ν = 0 for every f in A∗ and x belongs to the
orthogonal of the subspace generated by the vectors {fµ · ν | f ∈ A∗} which
is of dimension n by hypothesis: thus x = 0 . ��

Starting from a representation A, we first compute a word base for tA
which determines a representation tA′ such that Ψ tA′ is surjective, and thus
by Lemma 9, ΦA′ is injective. We then compute a word base for A′ which
determines a representation A′′ such that ΨA′′ is surjective and ΦA′′ is in-
jective: A′′ is reduced. The proof of Theorem 17 will be complete when we
have proved that word bases are effectively computable (with the ascribed
complexity). ��

The foregoing proofs all correspond to effective computations, assuming of
course that the operations in K (addition, multiplication, inverse) are effective.
All the complexities that follow are calculated assuming that each operation
in K has a fixed constant cost, independent of its operands. Computations
in Kn are based on the Gaussian elimination procedure.

Definition 26. A sequence of k vectors (v1, v2, . . . , vk) of Kn is an echelon
system if, for all i in [k]:
(i) vi

i = 1K ; (ii) ∀j < i vi
j = 0K .

An echelon system is free and hence k � n . The following proposition is
classic (for commutative fields) and its proof is left as an exercise.

Proposition 32 (Gaussian elimination). Let K be a skew field and let us
view Kn as a left vector space over K. Let S = (v1, v2, . . . , vk) be an echelon
system and let w be a vector in Kn.
(i) We can decide whether w is in 〈〈〈S 〉〉〉, the subspace generated by S, and,
in this case, compute effectively the coordinates of w in S.
(ii) If w is not in 〈〈〈S 〉〉〉, we can compute effectively w′ such that S′ = S∪{w′}
is echelon and generates the same subspace as S ∪ {w}.

The complexity of these operations (deciding whether w is in 〈〈〈S 〉〉〉 and
computing the coordinates of either w or w′) is O(kn). ��

From this proposition we deduce the effective nature of the assertions, con-
structions, and specifications used in the proofs of this section. More precisely:
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Corollary 7. Let S be a finite set of vectors of Kn and let w be in Kn.
(i) We can decide whether w belongs to 〈〈〈S 〉〉〉.
(ii) We can extract effectively from S a basis T of 〈〈〈S 〉〉〉.
(iii) We can compute effectively the coordinates in T of an (explicitly given)
vector of 〈〈〈S 〉〉〉. ��

If P is a non-empty prefix-closed subset of A∗, the border of P is the set:

C = P A \ P .

As an example, the prefix-closed subset {1A∗ , b, ba} and its border {a, bb, baa, bab}
are shown in Figure 11.

1A∗

a b

ba

baa bab

b b

Fig. 11. A prefix-closed subset and its border

The following proposition and its proof exhibit the computation underlying
Proposition 31.

Proposition 33. Word bases for A are effectively computable, with a com-
plexity O(dn3), where d is the cardinal of A.

Proof. We set P0 = {1A∗} and C0 = ∅ . The algorithm to compute P can be
written in the following manner.

If Ek = (Pk A \ Pk) \ Ck is non-empty, choose an arbitrary f in Ek and
decide whether λ · fµ belongs to 〈〈〈λ · Pkµ 〉〉〉 .
(i) If not, then Pk+1 = Pk ∪ {f} and Ck+1 = Ck .
(ii) If so, then Pk+1 = Pk and Ck+1 = Ck ∪ {f} .
Set k = k + 1 and start again.

The algorithm terminates when Ek is empty and at that moment Ck =
Pk A \ Pk is the border of Pk. The algorithm must terminate since Pk has at
most n elements, so Pk ∪ Ck has at most ‖A‖n + 1 elements and this set
grows by 1 at each step of the algorithm.

By construction, Pk is prefix-closed, and each element f of Ck is such
that λ · fµ belongs to 〈〈〈λ · Pkµ 〉〉〉: when Ek is empty, Pk is maximal. ��
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5.3 Applications of the reduction of representations

We consider here three applications: the decidability of equivalence of K-
automata (for certain K), the generalisation of the recurrence relation on the
coefficients of a rational series over non commuting variables, and a struc-
tural interpretation of equivalence of K-automata in terms of conjugacy and
covering (again for certain K).

5.3.1 Equivalence decidability

Even if a series has not a unique reduced representation (they are all similar),
the existence of reduced representation implies the decidability of equivalence
for automata with weights in a field.

Theorem 18. The equivalence of recognisable series over A∗ with coefficients
in a (sub-semiring of a) skew field — and thus of rational series — is decid-
able, with a procedure which is cubic in the dimension of the representation
of the series.

Proof. Let K be a sub-semiring of a skew field F. Two series s1 and s2

of KRecA∗ are also in FRec A∗ and s1 = s2 holds if, and only if, (s1 − s2)
is a series of FRec A∗ of rank 0 and the rank of (s1 − s2) can be computed
effectively. ��

This result, together with the well-known decidability of equivalence of
classical Boolean automata, should not let think that this is the universal
status. For instance, the following holds.

Theorem 19 ([27]). The equivalence of recognisable series over A∗ with co-
efficients in the semiring M = 〈N∞, min, + 〉 is undecidable.

Theorem 18 has however far reaching and to some extent ‘unexpected’
consequences, as the following one, discovered by T. Harju and J. Karhumäki.

Corollary 8 ([21]). The equivalence of rational series over A∗
1×A∗

2×· · ·×A∗
k

with coefficients in N is decidable.

Proof. By Proposition 22, a series in NRatA∗
1×A∗

2×· · ·×A∗
k is a series in

[NRatA∗
2×· · ·×A∗

k]RatA∗
1. By Corollary 4, the latter family is isomorphic to

[NRatA∗
2×· · ·×A∗

k]Rec A∗
1 and the decidability of equivalence follows from

Theorem 20. ��
Theorem 20. NRatA∗

2×· · ·×A∗
k is a sub-semiring of a skew field.

This result is the direct consequence of a series of classical results in math-
ematics which we shall not prove here (cf. for instance [11]) but simply state.
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Definition 27 (Hahn–Malcev–Neumann). Let K be a semiring and G
an ordered group. We write Kwo〈〈G〉〉 to denote the set of series on G with
coefficients in K whose support is a well ordered subset of G.

Theorem 21 (Birkhoff–Tarski–Neumann–Iwazawa11). A finite direct
product of free groups is ordered.

Theorem 22 (Malcev–Neumann). If K is a skew field and G an ordered
group, then Kwo〈〈G〉〉 is a skew field.

Theorems 21 and 22 imply that Kwo〈〈F (A2)×· · ·×F (Ak)〉〉 is a skew field
(here F (A) is the free group generated by A). To deduce Theorem 20, we must
also ensure that KRatA∗ – in fact K〈〈A∗〉〉 – is included in Kwo〈〈F (A)〉〉 ,
respectively that

K〈〈A∗
2×· · ·×A∗

k〉〉 ⊆ Kwo〈〈F (A2)×· · ·×F (Ak)〉〉 ;

that is, to be more precise, that we can order F (A2)×· · ·×F (Ak) in such a
way that the above inclusion is true and this is not difficul either.

Now, it is straightforward computations that 1-way k-tape Turing ma-
chines are faithfully modelised by automata over A∗

1×A∗
2×· · ·×A∗

k and that
two deterministic such machines are equivalent if, and only if, the correspond-
ing automata are equivalent as automata over A∗

1×A∗
2×· · ·×A∗

k with multiplicity
in N.

Corollary 9 ([21]). The equivalence of 1-way k-tape deterministic Turing
machines is decidable. ��

5.3.2 Recurrence relations

Another consequence of Theorem 15 is the generalisation to series over non
commuting variables of the characterisation by linear recurrences of coeffi-
cients of rational series over one variable. We begin with a property of fac-
torisation with respect to a word base.

Lemma 10. Let P be a non-empty prefix-closed subset and C = P A \ P its
border. Every word f of A∗ \ P can be written uniquely as f = cg with c
in C and g in A∗.

Proof. Let h = pa with p in P and a in A (this is the unique expression
of h in this form). There are two, mutually exclusive, possible cases: h is in C
or h is in P . Conversely, every word of P ∪ C can be written in this way,
except 1A∗ . Hence we deduce the equality between characteristic series :

C + P = P A + 1A∗ ,

which we first rewrite as 1A∗ −C = P (1A∗ −A) then, by right multiplication
by A∗ = (1A∗ − A)−1 , as A∗ − C A∗ = P , which proves the lemma. ��
11 And possibly others.
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Theorem 23 ([44]). A series s of K〈〈A∗〉〉 is recognisable if and only if there
exists a finite prefix-closed subset P and its border C = P A \ P , such that,
for each pair (c, p) in C×P , there exists a coefficient kc,p in K such that

∀g ∈ A∗ , ∀c ∈ C <s, cg> =
∑
p∈P

kc,p<s, pg> . (30)

Proof. Let P be a word base for a K-representation A = (λ, µ, ν) that recog-
nises s and (λ′, µ′, ν′) the K-representation computed as in Proposition 31.
For each c = pa in C and all q in P , we set kc,q = (aµ′)p,q . From (29) follows
that, for all g in A∗, it holds:

<s, cg> = λ · pµ · aµ · gµ · ν =
∑
q∈P

aµ′
p,q λ · qµ · gµ · ν =

∑
q∈P

kc,q<s, q g> .

Conversely, (30) implies that every quotient f−1s belongs to the sub-
space T generated by p−1s for p in P . This last property is trivially verified
if f is in P and (30) can be rewritten as

∀c ∈ C c−1s =
∑
p∈P

kc,p p−1s ;

that is, the property is verified for f in C. A contrario, suppose that f−1s
does not belong to T ; by Lemma 10 we have f = cg and choose f such that g
is of minimal length. By (30), we have, for all h in A∗,

<s, cg h> =
∑
p∈P

kc,p<s, pg h> that is, f−1s =
∑
p∈P

kc,p(pg)−1s .

For each p in P , either pg is in P , or pg = c′ g′ with c′ in C; then |c′| > |p|
hence |g′| < |g| and (pg)−1s is in T by the assumption of minimality of g.
Hence, f−1s belongs to T , which is a contradiction. Also, s is recognisable by
Theorem 15. ��
Remark 15. If A = {a} , every prefix-closed subset of A∗ has the form
P = {1a∗ , a, . . . , ar−1} for some integer r, and C is a singleton: C = {ar} .
Equation (30) becomes

∀n ∈ N <s, an+r> = kr−1<s, an+r−1> + kr−2<s, an+r−2> + · · · + k0<s, an> ;

that is, a linear recurrence in its standard form.

Another way to exploit Proposition 31, is by ‘computing’ the coefficients of
a reduced representation of a recognisable series as a function of the coefficients
of the series itself. Going from the series back to the representation does not
so much correspond to an effective procedure, like those described in Propo-
sition 31 and Theorem 23, as express a fundamental property of recognisable
series on a field.
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Proposition 34 ([44]). Let K be a skew field, s a K-recognisable series of
rank n , and (λ, µ, ν) a reduced representation of s . There exist two sets of n
words: P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} (which we can choose
to be respectively prefix-closed and suffix-closed) and two n×n matrices αP

and βQ such that

∀f ∈ A∗ fµ = αP · (<s, pi f qj>) · βQ ,

where (<s, pi f qj>) denote the n×n matrix whose entry (i, j) is <s, pi f qj> .
��

5.3.3 From equivalence to conjugacy

At Section 3.3, we have seen that it directly follows from the definition that two
conjugate automata are equivalent (Proposition 12). To some extent, that is,
for certain semirings K, this statement can be given a kind of converse, which
reads as follows.

Theorem 24 ([4, 2]). Let K be B, N, Z, or any (skew) field. Two K-automata
are equivalent if and only if there exists a third K-automaton that is conjugate
to both of them.

The proof of Theorem 24 relies on the idea of joint reduction which is
defined by means of the notion of representation. Let A = 〈λ, µ, ν〉 be a
K-representation of dimension Q and the associated map ΨA : A∗ → KQ . We
have already seen (Proposition 31 and Remark 14) that, in the two contrasting
cases of the Boolean semiring and of a field, we can choose a word base P
such that:
(i) {λ · pµ | p ∈ P} is a set of vectors, which is equal to (A∗)ΨA in the
Boolean case, which generates the same K-vector space in the field case;
(ii) there exists an automaton R which is conjugate to A by the transfer
matrix X whose rows are the vectors {λ · pµ | p ∈ P} .

Let now A = 〈λ, µ, ν〉 and B = 〈η, κ, χ〉 be two K-representations of
dimension Q and R respectively and let C be the sum of A and B: C =
〈ζ, π, ω〉 is a K-representation of dimension Q∪R, ζ =

[
λ η

]
is the horizontal

concatenation of λ and η, ω =
[
ν
χ

]
the vertical concatenation of ν and χ,

and π =
[
µ 0
0 κ

]
is the representation whose diagonal blocs are µ and κ. We

perform the same construction as before on C; we consider the set of vectors
(A∗)ΨC = {[λ · fµ η · fκ

] | f ∈ A∗} and loof for a finite set V of vectors[
x y

]
which, rougly speaking, generates the same K-module as (A∗)ΨC .

The computation of V provides indeed at the same time an automaton Z
which is conjugate to C by the transfer matrix Z whose rows are the vectors
in V . If A and B are equivalent, then Z, or a slight modification of it (depend-
ing on which semiring K the computations are currently done), is conjugate
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to both A and B by the transfer matrices X and Y respectively, where X
and Y are respectively the ‘left’ and ‘right’ parts of the matrix Z. In every
case listed in Theorem 24, the finite set V is effectively computable, a proof
that has to be done separatly for each case (cf. [4, 2]).

Together with the result of decomposition of conjugacy by means a se-
quence of co-covering, circulation, and covering (Theorem 5), and Proposi-
tion 14 that allows to build diagrams upwards, this result yields a structural
decomposition of the equivalence of two K-automata as shown at Figure 12.
In the case K = N , this decomposition takes the following form.

Corollary 10. Two equivalent N-automata can be transformed, one into the
other, by a chain of two state-splittings (in- and out-) and two state-mergings
(out- and in-). ��

X Y

C2

C3

C4

C4 C5

C5

C1R1
R2

D1 D2

D4 D6

A B
Fig. 12. Structural decomposition of the equivalence of two K-automata.

6 Support of rational series

It follows directly from Proposition 16 that for any (graded) monoid M , we
have:

Corollary 11. If K is a positive semiring, the support of a K-recognisable
series over M is a recognisable subset of M .

The assumption on K is necessary, even in the case where M is a free
monoid A∗, as shown by the following example.

Example 16 (Example 9 cont.). We have seen that t1 =
∑

f∈A∗ |f |b f is a
Z-rational series and thus so is s1 =

∑
f∈A∗ |f |a f . The series z1 = s1 − t1 =∑

f∈A∗ (|f |a − |f |b) f is a Z-rational series. The complement of supp z1 =
{f ∈ A∗ | |f |a 
= |f |b} is the language Z1 = {f ∈ A∗ | |f |a = |f |b} , which we
know is not rational.

In this short section, we study certain conditions which ensure the ra-
tionality of support of a series, and some closure properties of the family of
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languages thus defined. We end with several undecidable properties for Z-
rational series, somewhat surprising in this context where properties seem to
be all decidable and effective.

Recall that a series s of K〈〈A∗〉〉 is fundamentally a map from A∗ to K. It
is therefore natural to write, for every subset U of K, U s−1 for the set of
words of A∗ whose coefficient in s belongs to U :

U s−1 = {f ∈ A∗ | <s, f> ∈ U} .

Proposition 35. Let K be a locally finite semiring and let s be a K-rational
series. For all subsets U of K, U s−1 is rational.

Proof. Since s is also recognisable, s is recognised by a K-representation
(λ, µ, ν), of finite dimension Q, that is, µ : A∗ → KQ×Q is a morphism. Since K

is locally finite, the image (A∗)µ = M is a finite submonoid of KQ×Q. The
language U s−1 is recognised by the morphism µ : A∗ → M , a well-known
characterisation of rational languages of A∗. ��

Another way to state (and to prove indeed) Proposition 35 is to remark
that the reachability set (A∗)ΨA of any K-representation A is finite if K is
locally finite, or, to express it in an other way again: Counting in a (locally)
finite semiring is not counting, a basic fact that seems to have been often
overlooked.

Proposition 35 generalises in a remarkable way if K is a field. But it is not
a trivial remark anymore; it follows from the whole algebraic theory we have
built in this case.

Theorem 25 ([44]). Let K be a (skew) field. If s is a K-rational series with
a finite image, then k s−1 is rational for all k in K.

Proof. Let (λ, µ, ν) be a reduced representation that recognises s. By Proposi-
tion 34, the image (A∗)µ is a finite submonoid of KQ×Q if s has a finite image
and the conclusion follows as in Proposition 35. ��

Since the family of supports of K-rational series over A∗ strictly contains
RatA∗, a natural question is to ask under which operations this family is
closed. The answer certainly depends on K; a fairly complete one can be
given for sub-semiring of R.

Proposition 36 ([44]). Let K be a sub-semiring of R. The set of supports of
K-rational series on A∗ contains RatA∗ and is closed under union, product,
star and intersection.

Proof. The first assertion is a restatement of Proposition 7. Since KRatA∗

is closed under the Hadamard product, we deduce first the closure by in-
tersection, then, because s and s � s have the same support, it follows that
every support of a K-rational series is the support of a K-rational series with
non-negative coefficients. Then, for such series, we clearly have
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supp (s + s′) = supp s ∪ supp s′ , supp (ss′) = supp s supp s′

and supp (s∗) = (supp s)∗ . ��
The closure under morphisms and inverse morphisms is somewhat more

difficult to establish.

Proposition 37 ([16]). Let K be a sub-semiring of R. The set of supports of
K-rational series on A∗ is closed under morphisms and inverse morphisms.
��

The set RatA∗ is also closed under complement, but if K is not positive,
the set of supports of K-rational series can strictly contain RatA∗. The clo-
sure under complement is precisely characteristic of membership of Rat A∗ as
stated in the following result. Besides the reduction theory, its proof is based
upon the strongest versionof the iteration theorem (or pumping lemma) for
rational languages, due to A. Ehrenfeucht, R. Parikh and G. Rozenberg ([13]),
and itself based on Ramsey’s Theorem.

Theorem 26 ([36]). Let K be a (sub-semiring of a) skew field. If a language
and its complement are each the support of a K-rational series over A∗, then
this language is rational. ��

We construct, with this simple model of finite weighted automata, some
series for which we cannot answer some elementary questions, as soon as the
semiring of coefficients contains Z.

Theorem 27. It is undecidable if the support of a Z-rational series on A∗ is
all of A∗.

Proof. Let B = {x, y}; the morphism α : B∗ → N2×2 defined by

xα =
(

1 0
0 2

)
, and yα =

(
1 1
0 2

)
is injective (cf. the automaton C1 at Example 3).

Then let θ : A∗ → B∗ and θ : A∗ → B∗ be two morphisms. For i and j
equal to 1 or 2, the series si,j defined by

∀f ∈ A∗ <si,j , f> = ((fθ)α)i,j − ((fµ)α)i,j

are Z-rational, hence so are the series ti,j = si,j � si,j , and the series

t =
∑
i,j

ti,j .

The support of t is not all of A∗ if and only if there exists f such that <t, f> =
0 ; that is, since α is injective, if and only if fθ = fµ , which we know to be
undecidable (Post Correspondence Problem). ��
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With the same construction, we easily obtain:

Corollary 12. Let s be a Z-rational series on A∗. It is undecidable whether:
(i) s has infinitely many coefficients equal to zero;
(ii) s has at least one positive coefficient;
(iii) s has infinitely many positive coefficients. ��
Corollary 13. It is undecidable whether the supports of two Z-rational series
on A∗ are equal. ��

7 Notes

7.1 General sources

As already said in the introduction, this chapter is essentially an epitome of
Chapter III of [41] where more details and examples are to be found. More
precise references to some of them are given below.

A classical, and above all pioneering, reference on the subject is the treatise
by Eilenberg ([14]) whose influence is willingly acknowledged. Each of the
references quoted in the introduction ([43, 28]) or in Chap. 1 and 3 develops
a particular point of view worth interest. But the most advanced one is the
book of my friends and colleagues Jean Berstel and Christophe Reutenauer
([5]) and anyone really interested in weighted automata should certainly not
miss this work.

7.2 Notes to Sec. 2: rational series

One can say that it is Equat. (2) that justifies the choice of Eilenberg, op. cit.
, to call rational what was called regular in the foregoing literature. Schüt-
zenberger and his school, to which I acknowledge membership, followed him
but one must recognise it has not been a universal move. If the terminology
is still disputable for languages, and expressions, I do not think the question
may even be asked when it comes to series. On the other hand and in the
same work, Eilenberg calls a monoid with the property that every element is
finitely decomposable a locally finite monoid. This terminology inconveniently
conflicts with another accepted meaning of the phrase: a monoid such that
every finitely generated submonoid is finite (cf. [47]).

I was led to define strong semirings, a terminology suggested to me by
J. van der Hoeven, to be able to prove the equivalence between the existence
of the star of an arbitrary series and that of the star of its constant term.
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7.3 Notes to Sec. 3: weighted automata

The construction of SE is the version given in [31] of the generalisation to
weighted automata of the construction of the Glushkov automaton or position
automaton first given by Caron and Flouret [9].

In a sense the Fundamental Theorem is what Kleene showed for automata
over A ([25]), or its usual weighted generalisation (often called Kleene–Schüt-
zenberger Theorem). However, because these results apply to automata over
free monoids, their standard form — cf. Theorem 2.11, Chap. 3 — states
the identity between rational and recognisable languages or series, which no
longer holds for automata (weighted or otherwise) over arbitrary monoids.
Kleene’s Theorem was therefore split in two, as it were: one part which holds
for automata over arbitrary monoids and which, considering what the proof
involves, concentrates the substance of the theorem; and one part which holds
only for automata over free monoids and which is nearly a formality (cf. [40]).

Proposition 11 can be credited to Conway [12], Krob [26]; an elementary
proof is given in [41, 42].

The matter of Sec. 3.3 is taken from [3, 2]. Conjugacy of A to B by X
is called simulation from A into B in [7]. The definition of K-covering as
conjugacy by an amalgamation matrix is a hint for similarity between K-
coverings and state amalgamation in symbolic dynamical systems [29, §2.4].
If B is obtained from A by an In-amalgamation, then A is an N-covering of B.
But the converse is not true. Roughly speaking, and with the notations of
Proposition 13, A = 〈 I, E, T 〉 is a K-covering of B if the rows with ‘equivalent’
indices of the matrix E · Hϕ are equal while B is obtained by amalgamation
from A if the rows with ‘equivalent’ indices of the matrix E are equal.

The presentation of the minimal K-quotient is taken from [41], whereas
the notion itself probably exists in many other works; for instance, two K-
automata are in bisimulation if, and only if, their minimal K-quotients are
isomorphic.

7.4 Notes to Sec. 4: recognisable series

The definition of representations in the form (λ, µ, ν) is due to Fliess [17].
Lemma 7 is a classic statement in matrix theory and can be found already
in Gröbner [20] (cf. also [28, Th. 4.33]). Theorem 7 is due to Schützenberger
[46], including the more general formulation of Theorem 8. Theorem 9 is also
due to Fliess [18].

The matter of Sec. 4.3, and especially the definition of weighted relations,
is taken from Chapter IV of [41]. Another theory of weighted relations, slightly
different from that I have very briefly sketched here, is that of Jacob [23, 24].
It consists of defining with regulated rational transductions the largest possible
family of relations which satisfy the evaluation and composition theorems and
which correspond to total maps (and hence maps whose composition is also
always defined), and to do that independently of the semiring of coefficients.
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This point of view was adopted in related works [43, 28] which popularised
the work of Jacob.

7.5 Notes to Sec. 5: series over a free monoid

Some authors speak of the translation of a series instead of quotient; I have
preferred to use the same term as for languages.

The original work is due to Schützenberger [44, 45]. The characterisation
of recognisable series (Theorem 12) is a generalisation, due to Jacob [23], of
the property stated by Fliess for the case of series on a field [17].

The derivation of weighted expressions is a generalisation of V. Antimirov’s
work [1] (where derived terms were called partial derivatives). We note once
more that the introduction of weights clarifies and structures a result on lan-
guages, even if having to take into account not necessarily positive semir-
ings adds a certain complexity. This presentation is taken from [30]. With
somewhat different techniques, Rutten [38, 39] also proved Theorem 13 and
Proposition 29.

The original work for reduction of representations is again from Schützen-
berger [44]. The presentation here follows roughly [5] but as in a background
and owes much to my discussions with S. Lombardy. It keeps the Hankel
matrix of a series — which could be given the central role as M. Fliess did in
[17] — as a subliminal object. It is important for the sequel that the theory is
generalised to non commutative fields. In [19], it was also observed that Schüt-
zenberger’s reduction algorithm applies to the case of series on a skew field,
but with a reference to a previous theory of non-commutative determinants
[37]. The cubic complexity of the reduction algorithm was already established
in [8].

The problem of the decidability of equivalence of deterministic k-tape au-
tomata was posed in [35] and was solved for k = 2 by M. Bird [6] by an ad
hoc method, then by L. Valiant [49] as a corollary of the decidability of the
equivalence of ‘finite-turn’ deterministic pushdown automata. The problem
remained open for k � 3 until the solution in [21]. The material for The-
orems 21 and 22 is standard if not elementary algebra, and is explained in
sufficiently comprehensive treatises such as [11]. A self-contained presentation
and proof of is given in [41, IV.7]. The original proof of Theorem 22 by Neu-
mann [34] has been greatly simplified by Higman [22] where he proved what
is often known as ‘Higman’s Lemma’. The Russian version of the same result
was proved in [32].

Section 5.3.2 is adapted from [5], Section 5.3.3 from [4]. A result analoguous
to Theorem 24 holds for functional transducers as well, but this, its proof, and
its consequences somewhat fall out of the scope of this chapter (cf. [4, 2]).
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7.6 Notes to Sec. 6: support of rational series

The subject is hardly touched there and the reader is refered once again to [43]
or to [5]. Theorem 25 has been generalised to commutative rings by Sontag
[48]. The proof of Theorem 27 is taken from [14].
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8. Cardon, A., and Crochemore, M. Détermination de la représentation stan-
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