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6.17• (a) Describe the synchronised transducer which realises the recognisable relation K×L

starting with the automata A and B over A∗ and B∗ that recognise K and L respectively.

(b) Construct this automaton in the case where A = B = {a, b} and where

K = {f
∣∣ |f |b ≡ 1 mod 2} and L = {g

∣∣ |g|a ≡ 2 mod 3} .

6.18 Write out the proof of Proposition 6.20 based on that of Theorem 5.1.

6.19• Prove:

Proposition 6.21 A synchronous rational relation is a deterministic rational relation.

6.20 Verify that a recognisable relation is synchronous with a synchronisation ratio equal
to r, for any rational number r.

7 Malcev–Neumann series

The purpose of this section is to present a proof of:

Theorem 4.5 The semiring NRatB∗ is a sub-semiring of a skew field and so is,
more generally, the semiring NRat (A∗

2×· · ·×A∗
k) .

We have already said that this result is based on two theorems of algebra, whosecf. Sec. 4.3, p. 574

statement and the definitions they require are repeated below:

Definition 4.1 A total order relation � on a group G makes G an ordered group if
it is compatible, left and right, with multiplication in G; that is, if the following holds:

∀a, b, c ∈ G a � b =⇒ ac � bc and ca � cb . �

Theorem 4.6 [Birkhoff–Tarski–Neumann–Iwazawa] A finite direct product
of free groups is an ordered group.

Definition 4.2 [Hahn–Malcev–Neumann] Let K be a semiring and G an or-
dered group. We write30 Kwo〈〈G〉〉 for the set of series on G with coefficients in K
whose support is a well ordered subset of G. �

If there is no ambiguity we call Kwo〈〈G〉〉 simply the set of series on G with
coefficients in K or the set of K-series on G, in contrast with the general definition,
because they are the only series which we can reasonably consider on G if K is not acf. Sec. III.1.1 and

Note III.11, p. 381 continuous semiring.

Theorem 4.7 [Malcev–Neumann] If K is a skew field and G an ordered group,
then Kwo〈〈G〉〉 is a skew field.

30The notation Km〈〈G〉〉 is used by some authors, in homage to Malcev.
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7.1 Order on the free group

We seek here to attain and reconcile two distinct and almost contradictory objec-
tives: on one hand to prove in the most elementary possible way (that is, using the
simplest notions and most direct reasoning) that the free group can be ordered, and
on the other to describe and understand the nature of the order with which we shall
equip it.31

We start with some elementary properties on ordered groups, then we introduce
the Magnus representation of the free group, which is vital to the achievement of our
two objectives. We then prove Theorem 4.6 by making a detour via ordered rings, a
detour which turns out to be a fiendish shortcut. In the fourth paragraph, we return
to the description of the order we have thus constructed, which brings into play the
central descending series of the free group, which we shall also define with the aid of
the Magnus representation.

7.1.1 On ordered groups

We begin by showing that the definition of a total order on a group is equivalent to
finding sets of positive and negative elements; that is, of elements respectively greater
than and less than the neutral element of the group.

Proposition 7.1 A group G is ordered if and only if there exist two subsets P

and N of G which satisfy the following32 conditions:
(i) G = P ⊕N ⊕ 1G ; (ii) P 2 ⊆ P and N2 ⊆ N ; (iii) ∀t ∈ G t−1P t ⊆ P .

Proof. Suppose that G is ordered; we take

P = {g ∈ G
∣∣ 1G �/// g} and N = {g ∈ G

∣∣ g �/// 1G} .

This choice implies (i). The definition of the order on G implies

1G �/// g and 1G �/// h =⇒ 1G �/// g h ,

that is, (ii), and

1G �/// g =⇒ t �/// g t =⇒ 1G �/// t−1g t ,

that is, (iii).
Suppose conversely that there exist P and N which verify (i), (ii) and (iii); we

define a relation �/// on G by

g �/// h if and only if g−1h ∈ P ;

Hypothesis (i) implies that �/// is total and anti-symmetric; (ii) implies the transitivity
of �/// and (iii) ensures its compatibility with multiplication in the group.

31The result of this contradiction is long-windedness.
32The ⊕ denotes here the disjoint union.
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Proposition 7.2 A subgroup of an ordered group is ordered.

Proposition 7.3 If G and H are ordered groups, the group G×H is ordered.

Proof. We define the lexicographic order33 on G×H bycf. Sec. II.7.2, p. 326

(g, h) �/// (g′, h′) if and only if


g �/// g′

or

g = g′ and h �/// h′ .

We verify immediately that this order makes G×H an ordered group.

Remark 7.1 The result is actually much more general and extends to infinite prod-
ucts (on a set of well-ordered indices). �

Corollary 7.4 The free commutative group Zk is ordered.

7.1.2 Representation of the free group

Let Z〈A∗〉 be the algebra of polynomials on A∗ with coefficients in Z, and Z〈〈A∗〉〉 the
algebra of series on A∗ with coefficients in Z (also called the (large) algebra of the
free monoid). The representation of the free group F(A) described in the following
theorem is known as the Magnus representation.

Theorem 7.1 The morphism µ : A∗ → Z〈A∗〉 defined by aµ = 1 + a extends to
an injective morphism

µ : F(A) −→ Z〈〈A∗〉〉 ,

by taking a−1µ = 1 − a + a2 − · · · + (−1)nan + · · · .

Proof. Since (1 + a) (1 − a + a2 − · · · ) = (1 − a + a2 − · · · ) (1 + a) = 1, the choice
of a−1µ indeed makes µ a morphism. It suffices to show that 1Z〈〈A∗〉〉µ

−1 = 1F(A) and
for that that wµ �= 1 if w �= 1F(A) . We identify F(A) with the set of reduced words:
an element w in F(A) other than 1F(A) is written (uniquely) in the form

w = ai1
1 ai2

2 · · · ain
n ,

with aj in A, ij in Z \ 0 , and aj �= aj+1 for all j ∈ [n] . We shall show that the
support of wµ contains a1a2 · · · an . We write

a
ij
j µ = 1 + ij aj + aj

2 Sij (aj) , (7.1)

where Sij(aj) is a series of Z〈〈A∗〉〉. By assumption, the word a1a2 · · · an contains no
factor of the form aj

2 and the only way to obtain a1a2 · · · an in the product

wµ =
(
1 + i1 a1 + a1

2 Si1(a1)
)
· · ·
(
1 + in an + an

2 Sin(an)
)

is to form the product of the terms ij aij , and its coefficient is the product of the ij ,
all different from 0.

33N.B. this is not the product order on G×H , that is, the order obtained as the product of the

orders on G and H .



SEC. 7. MALCEV–NEUMANN SERIES 619

7.1.3 A detour via ordered rings

Definition 7.1 A total order � on a ring R makes R an ordered ring if it is com-
patible with addition in R and left and right multiplication by the ‘positive’ elements
of R; that is, if the following holds:

∀a, b, c ∈ R , ∀d ∈ R , 0R � d a � b =⇒
{

a + c � b + c ,

ad � bd and da � db .
�

We then have the equivalent of Proposition 7.1.

Proposition 7.5 A ring R is ordered if and only if there exists a subset C of R

which satisfies the following conditions:
(i) R = C ⊕ 0R ⊕ −C ; (ii) C is closed for + and × .

Proof. Suppose that R is ordered; we take

C = {x ∈ R
∣∣ 0R �/// x} .

The definition of the order on R implies directly

0R �/// x and 0R �/// y =⇒ 0R �/// x + y and 0R �/// xy .

Conversely, suppose that the subset C verifies (i) and (ii) ; we define the ordering
relation �/// on R by

x �/// y if and only if y − x ∈ C .

Condition (i) implies that �/// is total and antisymmetric; (ii) implies the transitivity
of �/// as shown by the following:

y − x ∈ C and z − y ∈ C =⇒ z − x = (z − y) + (y − x) ∈ C ,

and, together with the distributivity of × over +, it also implies compatibility with
multiplication in R.

Let U+(R) be the intersection of the group of units of R with C:

U+(R) = {x ∈ R
∣∣ 0R �/// x and x invertible} .

It is a simple exercise to verify:

Lemma 7.6 Let R be an ordered ring. The subset U+(R) is a group and the re-
striction of the order on R to U+(R) makes U+(R) an ordered group.

Proof of Theorem 4.6. We choose a total order on A∗ which is a well ordering and
is compatible with multiplication; that is,

a � b and c � d =⇒ ac � bd ,

for example, the radix order. We then order Z〈〈A∗〉〉 by choosing as the positive cone
the set of series such that the coefficient of the smallest monomial with a non-zero
coefficient is positive.

The group U+(Z〈〈A∗〉〉) is thus the set of series whose constant term is equal to 1.
The free group F(A) is a subgroup of U+(Z〈〈A∗〉〉), ordered by Proposition 7.2. A
finite direct product of free groups is ordered by Proposition 7.3.
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7.1.4 Order on the free group

We shall now describe more explicitly this order on the free group whose existence
we have just proved. To this end we shall use the Magnus representation to define a
sequence of normal subgroups of the free group. For all u and v in F(A), we write
[[[u,,,v ]]] = u−1 v−1 uv for the commutator of u and v and, if D and E are subsets
of F(A),

[[[D,,,E ]]] = {[[[u,,,v ]]]
∣∣ u ∈ D , v ∈ E} .

Theorem 7.2 Let Dn be the subset of F(A) defined by

Dn = {w ∈ F(A)
∣∣ wµ = 1 + Sw and v(Sw) � n} ,

where v(Sw) is the valuation of the series Sw . Then, for all n in N∗ ,cf. Rem. III.1.5, p. 387

(i) Dn is a normal subgroup of F(A) ( D1 = F(A) );

(ii)
⋂
n∈N

Dn = 1F(A) ;

(iii) Dn/Dn+1 is a finitely generated free commutative group; more precisely,
for n = 1 , we have: D1/D2 = Z‖A‖ ;

(iv) [[[Dn,,,D1 ]]] ⊆ Dn+1 .

Proof. (i) Since v(s t) = v(s) + v(t) for all s and t in Z〈〈A∗〉〉, Dn is a subgroup
of F(A), indeed, a normal subgroup, for all n in N∗.
(ii) By definition, 1F(A) belongs to the intersection of all the Dn and we saw with
Theorem 7.1 that wµ is different from 1 for all w in F(A) other than 1F(A) .
(iii) For all w in Dn, we write wµ in the form

wµ = 1 + Qw + S′
w , (7.2)

where Qw is a homogeneous polynomial of degree n of Z〈A∗〉 and v(S′
w) is greater

than or equal to n + 1. If w and w′ are in Dn, we have

(ww′)µ = 1 + Qw + Qw′ + S′
w w′

and the map πn : w �→ Qw is a morphism from Dn to the additive group Hn of homo-
geneous polynomials of degree n over Z〈A∗〉. The kernel of πn is Dn+1 and Dn/Dn+1

is isomorphic to (Dn)πn, a subgroup of Hn.
Of course H1, the group of homogeneous polynomials of degree 1, is isomorphic

to Z‖A‖ and it is again the proof of Theorem 7.1, Equation (7.1), which ensures the
surjectivity of π1 onto H1.
(iv) Let w be in Dn and t in D1 = F(A); we write

tµ = 1 + Ut + Tt ,

where Ut is a polynomial whose monomials are of degree between 1 and n (inclusive)
and Tt is a series with valuation greater than or equal to n + 1. By writing wµ in the
form of (7.2), we obtain

(wt)µ = 1 + Ut + Qw + Tw t and (tw)µ = 1 + Ut + Qw + Tt w .
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Thus, (wt)µ and (tw)µ are two series that are equal modulo An+1, hence so are
((wt)µ)−1 and ((tw)µ)−1 . It follows that ((tw)µ)−1 (wt)µ = ([[[w,,,t]]])µ is equal to 1
modulo An+1; that is, [[[w,,,t]]] belongs to Dn+1.

Remark 7.2 We have not really proved (iii), but only that Dn/Dn+1 is a subgroup
of a finitely generated commutative group. It is a classic result in algebra that such
a subgroup is itself a finitely generated free commutative group. Formally, though, cf. Exer. 7.4

we do not need to prove more than we already have in order to prove Theorem 4.6
(or Theorem 7.3).

Furthermore, it is standard, but rather more difficult to prove, that we have not
just the inclusion of [[[Dn,,,D1 ]]] in Dn+1 but also equality of the two, and thus that Dn is
the nth term of the central descending series of F(A). We shall not need this beautiful
result either. �

Theorem 7.3 Let A be a finite alphabet of cardinal k. For all group orders on Zk,
we can choose on F(A) an order which makes F(A) an ordered group such that the
canonical morphism γ : F(A) → Zk is a morphism of ordered groups.

Proof. We use the notation of Theorem 7.2 (and sketch the construction in Fig-
ure 7.1); for each n, Hn is a free commutative group (of rank kn), hence ordered, and
En = (Dn)πn is an ordered group (Proposition 7.2). Let En = Xn ⊕ Yn ⊕ 1En be
the partition constructed on this order (Proposition 7.1). Set Pn = (Xn)πn

−1 and
Nn = (Yn)πn

−1 (we have Dn+1 = (1En)πn
−1 ) and

P =
⋃

n∈N∗

Pn and N =
⋃

n∈N∗

Nn .

It remains to show that P and N satisfy the three conditions of Proposition 7.1 and
hence define an order on F(A).

P1

P2

N1

N2

D1

D2

D3

1F (A)

Figure 7.1: Construction of an order on F(A)

From Theorem 7.2(ii), we deduce that P ∪ N = F(A) \ 1F(A) .
Let u and v be in P , u be in Dn, hence in Pn, and v be in Dm, hence in Pm. If

n = m , (uv)πn = uπn vπn and uv is in Pn by the property of Xn. If n �/// m , then
uv is equivalent to u modulo Dn+1 hence belongs to Pn.
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Let u be in P , hence in Pn for some n, and t be in D1. Since t−1 ut = u[[[u,,,t]]] ,
and [[[u,,,t]]] is in Dn+1 (Theorem 7.2(iv)), u and t−1 ut are equivalent modulo Dn+1

and t−1 ut is in Pn, hence in P .
By definition, the canonical morphism γ : F(A) → Zk is equal to π1, and the

order on D1 \ D2, hence on F(A), is constructed in such a way that π1 is a morphism
for the order.

Exercises

7.1 Verify Proposition 7.2 and that the lexicographic order indeed makes the product of
two ordered groups an ordered group.

7.2 Show that we can order Zn other than by the lexicographic order, by projection on to
a line of ‘completely’ irrational gradient.

7.3 Verify Lemma 7.6.

7.4 Show that a subgroup of a free commutative group of rank k (that is, generated by k

elements) is a free commutative group of rank r � k.

7.2 Series on an ordered group

We now come to the proof of Theorem 4.7. It relies on the notion of a well partial
ordering and on Higman’s Theorem, which we saw in Section II.5. Hence, we freelyTh. II.5.2, p. 295

use the definitions and results proved in that section for well quasi-orderings and
which hold identically for well partial orderings. Recall in particular:cf. p. 293

Theorem II.5.2 [Higman] If X is a set equipped with a well partial ordering,
then division is a well partial ordering on V(X).

Properties II.5.2 Let E be a set equipped with a well partial ordering � .
(i) The trace of � on every subset of E is a well partial ordering.
(ii) Every image of E under a morphism is equipped with a well partial ordering.

7.2.1 The semiring Kwo〈〈G〉〉

Recall that if E and F are partially ordered sets, a map α : E → F is a morphismcf. Def. II.5.3, p. 298

(we understand ‘for the order’) if

a � b ⇒ aα � bα .

The morphism α is called strict if, in addition,

a �/// b ⇒ aα �/// bα .

In other words, the morphism α is strict if a � b and aα = bα imply a = b .

Lemma 7.7 Let α : E → F be a strict morphism between two ordered sets. If the
order on E is a well partial ordering, then, for all f in F , fα−1 is a finite set.
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Proof. By definition of a strict morphism, the elements of fα−1 are pairwise incom- cf. Th. II.5.1 (vi),
p. 294parable, and hence finite in number.

We now know enough to show that the series on an ordered group form a semiring.
We first prove a small lemma.

Lemma 7.8 Let G be an ordered group. The map π : G × G → G defined by
(g, h)π = g h is a strict morphism (of (partially) ordered sets).34

Proof. That π is a morphism is a direct consequence of the definitions: (g, h) �
(g′, h′) implies g � g′ and h � h′ , from which g g′ � hh′ .

Since (g, h) � (g′, h) � (g′, h′) , g h = g′ h′ implies g h = g′ h = g′ h′ and hence
g = g′ and h = h′ , since G is a group.

Proposition 7.9 If K is a semiring (resp. a ring) and G a (totally) ordered group,
Kwo〈〈G〉〉 is a semiring (resp. a ring).

Proof. We need to show that Kwo〈〈G〉〉 is closed under product. Therefore, let s and t

be series on G (with coefficients in K) whose supports, respectively S and T , are two
well ordered subsets of G. For each g h in S T , the set (S × T ) ∩ (g h)π−1 is finite
(Lemma 7.7) and the Cauchy product of s and t is well defined. The support of s t is cf. Propty II.5.2 (i)

and (ii), p. 298contained in (S × T )π and is hence a well ordered set.

7.2.2 Ordered semigroups

The last step is to define ordered semigroups, which will be an essential ingredient of
the proof of Theorem 4.7.

Definition 7.2 A semigroup P is called ordered if there exists a total order � on P

such that, for all r, s and t in P we have
(i) r � s =⇒ r t � s t and t r � ts ; (ii) r �/// r2 . �

Condition (i) expresses the regularity of the order relation for multiplication. It
entails, as for a congruence, that

r � r′ and s � s′ =⇒ r s � r′ s � r′ s′ .

From condition (ii) we deduce:

Lemma 7.10 In an ordered simplifiable semigroup a product is strictly greater than
each of its factors.

Proof. Let r and s be elements of P , an ordered semigroup, such that r �/// s .
From (ii) and (i), we obtain r �/// r2 � r s .

34But not at all a morphism of groups.



624 CH. IV . THE RICHNESS OF TRANSDUCERS

Furthermore, by multiplying (ii) on the right by s, we have r s � r2 s . If r s � s ,
it follows, by multiplying on the left by r, that r2 s � r s from which r s = r2 s or
r = r2 since P is simplifiable; this is a contradiction, hence s �/// r s .

Remark 7.3 Definition 7.2 is inconsistent in the sense that a group G is a semi-
group but at the same time an order that makes G an ordered group does not make
it an ordered semigroup, because of condition (ii). This does not matter: it is in fact
simply taking liberties with language, but it does require that we take care to give sep-
arate statements for analogous properties of ordered groups and ordered semigroups
(for example, Lemma 7.8 and Lemma 7.11).

On the other hand, if G is an ordered group, the trace of the order of G on the
set P of ‘positive’ elements of G certainly makes P an ordered semigroup, and this is
what we have in mind. �

With the same proof as that of Lemma 7.8 we have:

Lemma 7.11 Let P be an ordered semigroup. The map π : P × P → P defined
by (g, h)π = g h is a morphism (of (partially) ordered sets). If P is simplifiable the
morphism π is strict.

Lemma 7.12 Let P be a simplifiable ordered semigroup. The canonical morphism
(of semigroups) α : V(P ) → P is a strict morphism (of ordered sets).

Proof. Suppose (s1, s2, . . . , sp) � (t1, t2, . . . , tn) ; there then exists an ascending se-
quence of indices i1, i2, . . . , ip such that, for all j, sj � tij . Thus

(s1, s2, . . . , sp)α = s1s2 · · · sp � ti1ti2 · · · tip .

Lemma 7.10 used p + 1 times gives

ti1ti2 · · · tip � t1t2 · · · tn = (t1, t2, . . . , tn)α .

Lemma 7.11 and Lemma 7.10 ensure that we cannot have the equality

(s1, s2, . . . , sp)α = (t1, t2, . . . , tn)α

unless p = n and sj = tj for all j, hence α is strict.

7.2.3 The field Kwo〈〈G〉〉

From the above results we now easily deduce the crucial result for the embedding
of F(A) in a field.

Proposition 7.13 [Neumann] Let P be an ordered simplifiable semigroup and S

a well ordered subset of P . Then
(i) The semigroup generated by S, S+, is a well ordered subset of P .
(ii) The family {Sn}n∈N is locally finite: every p in S+ belongs to a finite number
of the Sn.
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Proof [Higman]. We write, as in Lemma 7.12, α : V(P ) → P for the canonical
morphism.
(i) Since S is well ordered, V(S) is a well (partially) ordered set by Higman’s

Theorem; the semigroup S+ = (V(S))α is well ordered by Lemma 7.12 and Proper-
ties II.5.2.
(ii) For all p in S+, (p)α−1 is finite by Lemma 7.7 and since, under our assumptions,
the morphism α is strict. A fortiori, (p)α−1 ∩ V(S) is finite, and this is exactly the
property sought.

Proof of Theorem 4.7. We already know that Kwo〈〈G〉〉 is a ring; to prove that it
is a skew field, we must show not only that every non-zero element is invertible but
also that this inverse belongs to Kwo〈〈G〉〉. Let, as in Proposition 7.1, P be the set of
‘positive’ elements of G; as we have already noted, the trace on P of the order of G

makes P an ordered semigroup (and P is simplifiable since it is a sub-semigroup of a
group).

Let t be an arbitrary non-zero element of Kwo〈〈G〉〉. Let T = supp t be the (non-
empty) support of t, and gt = minT the smallest element of T : this exists since, by
definition of Kwo〈〈G〉〉, T is a well ordered set. We can then write

t = <t, gt>gt (1 − s) , that is, written otherwise, s = 1G − 1
<t, gt>

gt
−1 t ,

and the series s thus defined satisfies

<s, 1G> = 0K and <s, g> =
−1

<t, gt>
<t, gt g> ,

for all g in G. Hence we deduce that <s, g> �= 0K implies that gt �/// gt g , that
is, 1G �/// g , and the support S = g−1

t T \ 1G of s is hence contained in P .
The family {sn}n∈N is locally finite by Proposition 7.13(ii); it is thus summable

and the support of its sum s∗ is a subset of S∗ hence a well ordered subset of G:
then s∗ belongs to Kwo〈〈G〉〉 and so does

t−1 = s∗gt
−1 −1

<t, gt>
.

7.2.4 A last inclusion

The theorem that we want to prove requires a final lemma on well ordered sets. Th. 4.5, p. 616

Lemma 7.14 For each i in a finite set I, let Fi be a well ordered subset of a
(totally) ordered set Ei. Then

∏
i∈I Fi is a well ordered subset of

∏
i∈I Ei , ordered

lexicographically.

Note that this lemma is not redundant with respect to Property II.5.2 (recalled
above) since the order considered here on

∏
i∈I Ei is not the product order but the

lexicographic order. We then deduce from Theorem 7.3:
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Corollary 7.15 Let A be a finite alphabet. We can choose an order on F(A) such
that the canonical injection makes A∗ a well ordered subset of F(A).

Proof. Let k = ‖A‖ . Since N is a well ordered submonoid of Z, we see Nk is a well
ordered submonoid of Zk. We choose an order on F(A) such that γ : F(A) → Zk is a
morphism for the lexicographic order on Zk.

Let f1, f2, f3,. . . be a sequence of words in A∗, strictly descending for the order
of F(A). Its image under γ is a descending sequence of Nk, hence eventually stationary.
As the inverse image under γ in A∗ of an arbitrary element of Nk is finite, the
sequence fi is also eventually stationary; we have a contradiction, and A∗ is a well
ordered subset of F(A).

Theorem 4.5 is then only a formality since we have

NRatA∗ ⊆ N〈〈A∗〉〉 ⊆ Q〈〈A∗〉〉 ⊆ Qwo〈〈F (A)〉〉 ,

the first three inclusions being obvious and Corollary 7.15 ensuring the last one.

Exercises

7.5 Verify Lemma 7.11.

7.6 Justify our assertion in Theorem 4.7 that S∗ is a well ordered subset, since we have
only proved the property for S+ in Proposition 7.13.

7.7 Verify Lemma 7.14.


