
Five lectures in the theory of
Weighted Automata and Transducers

Jacques Sakarovitch
IRIF/CNRS–Université Paris Diderot & Télécom-ParisTech

Lectures notes of the Master Parisien de Recherche en Informatique

Course 2.16 — Finite automata based computation models

December 2018 – January 2019

c©2018 Jacques Sakarovitch

Contents

I The model of weighted automata
Rationality and recognisability 1

II Morphisms of weighted automata
Conjugacy and minimal quotient 35

IIIReduction of weighted automata
Controllability and observability 53

IV Transducers (1)
The 2-tape Turing machine model 73

V Transducers (2)
Realisation by representations 93

Notation Index 107

These lectures notes are intended to be as self-contained as possible. However,
many complements — sometimes in a slightly different setting, as my point of view
has evolved — are to be found in my book Elements of Automata Theory (Cambridge
University Press, 2009). References to this work are indicated in marginal notes.

Every lecture ends with an exercise section. The note and the reference sections are
still missing, as well as the general index.

iii

Lecture I

The model of weighted automata
Rationality and recognisability

This chapter is aimed at
(i) introducing, or recalling, the notions of weighted automata and of represen-

tations, that are the subject of the lectures to come,
(ii) giving the proof of their equivalence which is considered here as a basic

property,
(iii) and fixing the terminology and notation.

Contents
1 The model of K-automata 2

1.1 Weight semirings . 2
1.2 The graph definition of K-automata 4
1.3 Series over A∗ with coefficients in K 7

2 Rationality . 8
2.1 The matrix description of K-automata 9
2.2 Rational series . 11
2.3 The Fundamental Theorem of Finite Automata 15
2.4 Generalisation to graded monoids 21

3 Recognisability . 23
3.1 K-representations and K-recognisable series 23
3.2 The key lemma . 24
3.3 The Kleene–Schützenberger Theorem 25
3.4 The Hadamard product . 27

4 Exercises . 29

1

2.16 – Finite automata based computation models MPRI 2018/2019

1 The model of K-automata

For sake of simplicity, we first restrict ourselves to automata over a free monoid A∗;
the generalisation to automata over other monoids, at least over graded ones (cf.
Section 2.4), is straightforward.

Automata with multiplicity or weighted automata are perfectly synonymous.
The latter is preferred, at least in English, for its conciseness. In French, ‘automate
à poids’ is, as are neckties of the same kind, rather inelegant. Let us mention that
weight is often attached to ‘numerical’ multiplicity in the literature but we do not
restrict ourselves to this case here.

1.1 Weight semirings

Semirings. A semiring K is a structure with both an addition and a multiplication,
with the usual distributivity laws. More precisely:

• SA1. K is a commutative monoid for addition, written +, whose neutral element,
called the zero of K, is written 0K (or 0).

• SA2. K is a monoid (not necessarily commutative) for multiplication, written by
a dot, or more often by simple juxtaposition, whose neutral element, called
the identity of K, is written 1K (or 1).

• SA3. The multiplication distributes left and right over the addition; that is,

∀i, j, k ∈ K i · (j + k) = (i · j) + (i · k) and (i + j) · k = (i · k) + (j · k) .

• SA4. The neutral element for addition is a zero for multiplication (which justifies
the terminology):

∀k ∈ K k · 0K = 0K · k = 0K .

If 1K = 0K , then K is reduced to this single element. In the sequel, we assume
that 1K �= 0K .

A semiring is commutative when its multiplication is a commutative operation.
The semiring structure is the most rudimentary one such that matrices with

entries in that structure can be multiplied with the usual laws. On the other hand,
if K is a semiring, then KQ×Q, the set of square matrices of dimension Q with entries
in K and equipped with the usual addition and multiplication, is a semiring.

Remark 1. We use sets rather than integers as a dimension for vectors and matrices.
The easiness in writing it brings — which puts the emphasis on the fact that listing
values in a vector or a matrix is rather about indexing these values than comparing
their rank — proves to be very convenient.

Work in Progress – 2 – 21 January 2019

Lecture notes Weighted Automata and Transducers

The semirings we use. We shall be concerned mostly with the following four
classes of weight semirings:

• First, the Boolean semiring B, which indeed means ‘no weight’.

• Second, the classical semirings of numbers:
N, Z, Q+, Q, R+, R,

that is, the non-negative integers, the integers, the non-negative rationals, the
rationals, the non-negative reals, and the reals.

• Third, the so-called tropical semirings:
Nmin = 〈N ∪ {+∞}, min, + 〉 , Nmax = 〈N ∪ {−∞}, max, + 〉 ,
Zmax = 〈Z ∪ {−∞}, max, + 〉 , Qmax = 〈Q+ ∪ {−∞}, max, + 〉 , etc.

For all these semirings, the identity 1K is the number 0; the zero 0K is either +∞
when the ‘addition’ is min or −∞ when the ‘addition’ is max.

• and finally the semirings of subsets and of series:

– 〈P (A∗), ∪, · 〉 , the semiring of subsets of the free monoid,

– its subsemiring of rational languages Rat A∗ ,

– K〈〈A∗〉〉 , the semiring of series1 over A∗ with multiplicity in K, etc.

• And, of course, the semirings of (square) matrices with entries in all the above
semirings.

In the sequel, K denotes a semiring.

Morphisms. If K and L are semirings, a map ϕ : K → L is a morphism of
semirings if

∀k, l ∈ K

{
ϕ(k + l) = ϕ(k) + ϕ(l) and ϕ(0K) = 0L ,

ϕ(k l) = ϕ(k) ϕ(l) and ϕ(1K) = 1L .

That is, ϕ is a morphism of monoids for both the additive and multiplicative struc-
tures of K and L.

A semiring K is positive if both the sum and the product of any two non-zero
elements of K are non-zero; in other words, if the support map σ : K → B such
that σ(k) = 1B for all k �= 0K (and σ(0K) = 0B) is a morphism of semirings.
The semirings N, Zmin or Zmax (!), Q+ and Rat A∗ are positive, while Z, Q and R

are not.

Exercises See Exer. 1. to 2., p.29.

1that will be defined below.

Not to be circulated – 3 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

1.2 The graph definition of K-automata

A classical, or Boolean, automaton A is a labelled directed graph, denoted2 as a
5-tuple A = 〈 A, Q, I, E, T 〉 , where A is the (input) alphabet, Q the set of states,
I and T the sets of initial and final states, and E ⊆ Q×A×Q is the set of transitions
of A.

An automaton over A∗ with weight in K, or K-automaton over A∗ is a gener-
alisation of the former: it is a labelled directed graph. We develop and complete
this definition below. In the next section, we build on the identification of a graph
with its incidence matrix and the proofs will be performed systematically with mat-
rix computations. The essence of an automaton however remains that of a graph
and the behaviour of an automaton is defined in the language of graphs. We also
continue to use the graph representation and its vocabulary to aid intuition.

We take here a definition of automata that is restricted compared to the one
taken in EAT. It fits our needs for the developments we want to present and wecf. EAT, p. 402

lose nothing as the more general definition is proved to be equivalent to the restric-
ted one, when it makes sense. We thus save the task of proving this equivalence
and, more important, of tackling the problem of characterising when this general
definition makes sense. On the other hand, we have to prove the equivalence with
automata ‘with spontaneous transitions’ which will make for the general definition.
This happens to be somewhat subtle and difficult and will not be considered in these
lectures.

The definition of K-automata.

Definition 2. A K-automaton over A∗ is a labelled directed graph together with
two maps from its set of vertices to K. Its vertices are called states; its edges, called
transitions, are associated with weighted labels, that are pairs (a, k), with k in K

and a in A, also written k a or a |k depending on the context.

We denote a K-automaton over A∗ by A = 〈K, A, Q, I, E, T 〉 where:

• K is the weight semiring and A is the alphabet which generates A∗.

• Q is the set of states of A, also called the dimension of A.

• I and T are respectively the initial and final functions, functions from Q

into K, that is, elements of KQ , and

• E ⊆ Q×A×K×Q, the set of weighted transitions, is the graph of a partial
function from Q×A×Q into K \ {0K}.

2The notation in EAT is A = 〈 Q, A, E, I, T 〉 . It has been changed in order to be consistent
with the use of the Awali platform.

Work in Progress – 4 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Let e = (p, x, k, q) be a transition of A:

• the source of e, written ι(e), is p and the destination of e, written τ(e), is q,

• the label of e, written �(e), is x,

• the weight of e, written w(e), is k, and

• the weighted label, w-label for short, of e, written wl(e), is the monomial k x.

The assumption that E is a partial function implies that two distinct transitions
cannot have the same source, destination, and label, the one that it is a partial
function into K \ {0K} implies that the weight of a transition cannot be equal to 0K.

A state p is said to be initial (resp. final) if I(p) (resp. T (p)) is different from 0K,
that is, if p is in the support of the function I (resp. T).

Figure 1 shows two N-automata, B1 (left) and C1 (middle) and one Nmin-auto-
maton M1 (right).

b

a a

b b

b

a 2a

b 2b

0 0 0 0
a |0

b |1

a |1

b |0

Figure 1: Two N-automata and one Nmin-automaton

One reads on this figure conventions commonly taken when drawing weighted
automata. For classical semirings of numbers, the multiplicative identity element 1K
remains implicit, hence incoming (resp. outgoing) arrows without label indicate
that the initial (resp. final) map gives the corresponding state the value 1K, and
accordingly a transition without weight is supposed to be given the weight 1K. For
tropical semirings, the multiplicative identity which is the number 0 is explicitely
written, and so is the weight 1 which is just another element of the weight semiring.
In this case also, a monomial k a is often written as a |k.

The automaton A is finite if the set E is finite, which is equivalent, when the
alphabet A is finite, to the condition that Q be finite. Every automaton we consider
in this lecture (but not in this course) is finite.

Most often, the weight semiring K is understood from the context and we simply
write A = 〈 A, Q, I, E, T 〉 . In the sequel, A denotes a K-automaton.

Paths and computations. Since A is a graph, a path in A is a sequence of
transitions such that the destination of every transition is the source of the next
one; it can be written as:

d1 = e1e2 · · · en or as d1 = p0
k1 x1−−−−→ p1

k2 x2−−−−→ p2 · · · kn xn−−−−→ pn .

Not to be circulated – 5 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

The label, respectively the weight and the w-label, of a path d, is the product of the
labels, respectively of the weights and of the w-labels, of the transitions of d. For
instance,

�(d1) = x1 x2 · · · xn , w(d1) = k1 k2 · · · kn ,
and wl(d1) = (k1 k2 · · · kn)x1 x2 · · · xn .

A computation in A is a path together with the values of the initial and final functions
at the ends of the path. For instance, the computation corresponding to the above
path d1 is c1 = (I(p0), d1, T (pn)) and the label, the weight and the weighted label
of c1 are

�(c1) = �(d1) , w(c1) = I(p0)w(d1)T (pn) and wl(c1) = I(p0)wl(d1)T (pn) .

The length of a path d, or of a computation c, is the number of transitions it contains
and is denoted by |d| (or |c|). For instance, |c1| = |d1| = n. The weighted label of a
computation associated with a path that does not start at an initial state or end at
a final state is hence equal to 0K.

The set of computations of an automaton A is denoted by CA. (The seemingly
tetrapylotomic distinction between path and computation will be used later on — in
Lemma 7 for instance — but may be forgotten in most cases.)

The weight of a word and the behaviour of a K-automaton. The weight,
or multiplicity, of a word w in A is the sum of the weights of the computations in A
whose word label is w. Hence the automaton A associates with every word in A∗ a
value in K, that is, defines a map from A∗ to K that we denote by A :

∀w ∈ A∗ A (w) =
∑

c∈CA, �(c)=w

w(c) . (1.1)

This sum (1.1) is well-defined if w is the word label of a finite number only of
computations in A. With the definition we have taken for automata, this condition
holds for every w in A∗ when Q is finite: a word of length n is the label of a
computation of length n and there are only a finite number of those in A.3

This function A : A∗ → K is said to be realised by A and is called the behaviour
of A. It is the natural generalisation of the language accepted by a Boolean auto-
maton: the latter can be seen as an application from A∗ to B that maps a word w

to 1B or 0B according to whether w belongs or not to the language.

Example 3. (Automata of Figure 1). A simple calculation yields the behaviour
of B1: for every w in {a, b}∗, B1 (w) = |w|b holds.

3Another case where the weight of every word is well-defined even when Q is infinite is when the
structure of A insures that every word is the label of at most a finite number of computations, e.g.
when A is deterministic or sequential, a case that will be considered in Lecture III.

Work in Progress – 6 – 21 January 2019

Lecture notes Weighted Automata and Transducers

It is as simple to determine that M1 (w) = min{|w|a, |w|b} for every w in {a, b}∗.
If we use the convention that each word w of {a, b}∗ is considered as a number

written in binary, interpreting a as the digit 0 and b as the digit 1, and if we write w

for the integer represented by the word w, it is easy to verify that w is computed
by C1, in the sense that C1 (w) = w , for every w in {a, b}∗.

Before going further, we take a number of notation and definitions concerning
these maps from A∗ into K.

1.3 Series over A∗ with coefficients in K

For any set E, the set of maps from E to K is usually written KE and canonically
inherits from K a structure of semiring when equipped with pointwise addition and
multiplication.

When E is a monoid A∗, we equip KA∗ with another multiplication which derives
from the monoid structure of A∗ and we thus use different notation and terminology
for these maps together with this other semiring structure.

Any map from A∗ to K is a formal power series over A∗ with coefficients in K

— abbreviated as K-series over A∗, or even as series if there is ambiguity neither
on K nor on A∗. The set of these series is written K〈〈A∗〉〉 .

If s is a series, the image of an element w of A∗ by s is written 〈s, w〉 rather
than s(w) or (w)s and is called the coefficient of w in s.
For all s and t in K〈〈A∗〉〉, and all k in K, the following operations are defined:

(i) the (left and right) ‘exterior’ multiplications:

k s and sk by ∀w ∈ A∗ 〈k s, w〉 = k〈s, w〉 and 〈sk, w〉 = 〈s, w〉k

(ii) the pointwise addition:

s + t by ∀w ∈ A∗ 〈s + t, w〉 = 〈s, w〉 + 〈t, w〉

(iii) and the Cauchy product:

s t by ∀w ∈ A∗ 〈s t, w〉 =
∑

u,v∈A∗
uv=w

〈s, u〉〈t, v〉 . (1.2)

Addition makes K〈〈A∗〉〉 a commutative monoid; together with the two exterior
multiplications, it makes K〈〈A∗〉〉 a left, and right, module over K.

For every w in A∗, the number of factorisations uv = w is finite, hence the sum
in (1.2) is well-defined, and so is the Cauchy product of two series s and t in K〈〈A∗〉〉.
This product, together with the pointwise addition, makes K〈〈A∗〉〉 a semiring and,
together with the exterior multiplications, a left, and right, algebra over K.

With these notations and definitions, the behaviour A of A is a series of K〈〈A∗〉〉,
the coefficient of w in A is 〈 A , w〉 and Example 3 is rewritten as 〈 B1 , w〉 = |w|b ,
〈 C1 , w〉 = w and 〈 M1 , w〉 = min{|w|a, |w|b} , for every w in {a, b}∗.

Not to be circulated – 7 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Lemma 4. Let Q be a finite set. The semiring of square matrices of dimen-
sion Q with entries in K〈〈A∗〉〉 is isomorphic to that of series over A∗ with coefficient
in KQ×Q, that is, K〈〈A∗〉〉Q×Q ∼= KQ×Q〈〈A∗〉〉 .

Support of a series – polynomials – characteristic series. The support of
a series s, written supp s , is the subset of words in A∗ whose coefficient in s is
not 0K. For instance, supp B1 = A∗bA∗ , and supp M1 = A∗ (since 0 is not the
zero of Nmin).

A series with finite support is a polynomial; the set of polynomials over A∗ with
coefficients in K is written K〈A∗〉. It is a sub-algebra of K〈〈A∗〉〉.

Conversely, if L is a language of A∗, L denotes the characteristic series of L

in N〈〈A∗〉〉 or, more generally, in K〈〈A∗〉〉, for any K given by the context:

∀w ∈ A∗ 〈L, w〉 =

 1K if w ∈ L

0K otherwise .

Accordingly, a series is said to be characteristic if it is equal to the characteric
series of its own support.

Support of an automaton – characteristic automata. A Boolean automaton
is exactly a B-automaton and will usually be denoted as such to avoid ambiguity.

Every K-automaton A can be transformed into a B-automaton, called the sup-
port of A , denoted by supp A , and obtained by replacing every non-zero (non 0K)
weight on transitions by 1 = 1B . Of course, supp (A) may be strictly contained in
supp A . The equality supp (A) = supp A holds if K is positive.

If the weight of all transitions of a K-automaton A, as well as the non-zero values
of the initial and final functions, are equal to 1K — as it is the case for B1 for instance
— then A is said to be characteristic.

Given a Boolean automaton A and a semiring K (usually it is N), A denotes the
characteristic K-automaton the support of which is A. Of course, A is not equal
to A , which is a characteristic series. More precisely, if A is a Boolean automaton
over A∗, then, for every w of A∗, 〈 A , w〉 is the number of successful computations
labelled by w in A, that is, the degree of ambiguity of w in A.

Exercises See Exer. 3. to 6., p.29.

2 Rationality

We give a first characterisation of the behaviour of finite weighted automata. It is
not the one which will be most important for us, not the one on which we build

Work in Progress – 8 – 21 January 2019

Lecture notes Weighted Automata and Transducers

the developments to come in the next two lectures. It is of interest though for three
reasons; first because it is the generalisation of the characterisation that is most
common when dealing with classical Boolean automata; second because it is the one
that holds also for (weighted) automata on non free monoids, third because it paves
the way to the second characterisation we are aiming at.

2.1 The matrix description of K-automata

Graphs can be defined by their incidence matrix; we extend this description to
automata.

We write the set E as a square matrix of dimension Q: every entry Ep,q is the sum
of the weighted labels of all transitions in A from p to q, thus a linear combination
of letters in A with coefficients in K, hence in K〈A∗〉, and can indeed be seen as the
label of a unique transition that goes from p to q. Along the same line, we see I

as a row-vector4 and T as a column-vector in KQ and the K-automaton A is then
written as A = 〈 I, E, T 〉 .

Remark 5. Writing E rather than E for the incidence matrix would be more correct
as it would mark the distinction between the set of transitions and the matrix that
is derived from it. Such a distinction has proved to be necessary when studying
the validity of weighted automata with spontaneous transitions (transitions whose
label is the empty word, a case which is ruled out in the model we study here) but
we shall not study this question in these lectures. On the contrary, we shall deal
with the set of transitions of an automaton almost exclusively under the form of the
incidence matrix, for which we choose the simpler and lighter notation.

Example 6 (Example 3 cont.). The N-automaton B1 over {a, b}∗ shown in Figure 1
(left) may be written as

B1 =
〈(

1 0
)

,

(
a + b b

0 a + b

)
,

(
0
1

)〉
,

whereas the N-automaton C1 shown in Figure 1 (middle) is written as

C1 =
〈(

1 0
)

,

(
a + b b

0 2a + 2b

)
,

(
0
1

)〉
.

The Nmin-automaton M1 shown in Figure 1 (right) is written as

M1 =
〈(

0 0
)

,

(
0a + 1b +∞

+∞ 1a + 0b

)
,

(
0
0

)〉
,

4I recently became aware that in linear algebra treatises all vectors are column-vectors by defin-
ition and a row-vector is the transpose of a column-vector. It seems to me that having both
possibilities is handier and I stay with my habit, at least in these lecture notes.

Not to be circulated – 9 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

The description of the transitions of an automaton by a matrix is justified by
the fact that a walk over a graph corresponds to a matrix multiplication. This is
expressed by the following statement.

Lemma 7. Let A = 〈 I, E, T 〉 be a K-automaton over A∗ of finite dimension.
For every integer n, En is the matrix of the sums of the weighted labels of paths of
length n.

Proof. By induction on n. The assertion is true for n = 1 (and also for n = 0 by
convention). The definition of the (n + 1)th power of E is given by the equation:

∀p, q ∈ Q (En+1)p,q =
∑
r∈Q

(En)p,r Er,q .

Every path of length n + 1 is the concatenation of a path of length n with a path of
length 1, that is, a single transition. We can therefore write5

{
c

∣∣∣∣ c := p −−→
A

q , |c| = n + 1
}

=⋃
r∈Q

{
(d, e)

∣∣∣∣ d := p −−→
A

r , |d| = n , e := r −−→
A

q ∈ E

}
,

and hence∑(
wl(c)

∣∣∣∣ c := p −−→
A

q , |c| = n + 1
)

=
∑
r∈Q

(
wl(d)wl(e)

∣∣∣∣ d := p −−→
A

r , |d| = n , e := r −−→
A

q ∈ E

)

=
∑
r∈Q

(∑(
wl(d)

∣∣∣∣ d := p −−→
A

r , |d| = n

))
Er,q .

As
∑(

wl(d)
∣∣∣∣ d := p −−→

A
r , |d| = n

)
= (En)p,r by the induction hypothesis,

the lemma is proved.

Since every word w of A∗ appears in the support of the entries of at most the
only power En where n = |w|, the sum

∑
n∈N En is well-defined as we shall see in

the next subsection and it holds:

Corollary 8. Let A = 〈 I, E, T 〉 be a K-automaton of finite dimension. Then:

A =
∑
n∈N

(I · En · T) = I ·

∑
n∈N

En

 · T .

5Recall that the length of a path c is written |c|.

Work in Progress – 10 – 21 January 2019

Lecture notes Weighted Automata and Transducers

2.2 Rational series

As hinted by Corollary 8, the characterisation of the behaviour of (finite) weighted
automata implies the definition of infinite sums of series. There are essentially two
ways for tackling this problem: the axiomatic approach and the topological one. The
axiomatic approach consists in imposing a set of properties to an operation called
star. But the star in the weight semirings we have listed above and that we want to
be able to deal with will not meet these properties. We are thus bound to take the
topological way, which is not a bad solution anyway.

2.2.1 The topological way

Topological semirings. Defining a topology on a set is the way to define the
notions of limit (or convergence) and, then, of infinite sums. Since K〈〈A∗〉〉 = KA∗

is the set of maps from A∗ to K, it is naturally equipped with the product topology of
the topology on K, which is also the simple convergence topology, that is, if

(
sn

)
n∈N

is a sequence of series

sn converges to s if and only if
for all w in A∗, 〈sn, w〉 converges to 〈s, w〉 .

The semirings we consider are equipped with a topology defined by a distance — a
more intuitive notion than an abstract definition of the topology — whether it is
the discrete topology (in the cases of N, Z, Zmin, etc.) or a more classical one (in the
cases of Q, R, etc.). Since A∗ is countable, the product topology on K〈〈A∗〉〉 is also
defined by a distance. If c is a distance on K (bounded by 1), the map defined by

∀s, t ∈ K〈〈A∗〉〉 d(s, t) =
1
2

∑
n∈N

(1
2n

max
{

c(〈s, w〉, 〈t, w〉)
∣∣∣ |m| = n

})
(2.1)

is a distance on K〈〈A∗〉〉 that defines the simple convergence topology. In any case,
the origin of the topology on K〈〈A∗〉〉 is the topology on K (cf. Exercise 16. for more
details on the definition of distance on K〈〈A∗〉〉).

A semiring K is a topological semiring if not only the set K is equipped with a
topology but if moreover both the addition and the multiplication are continuous
operations with respect to that topology. If K is a topological semiring, so is K〈〈A∗〉〉.

Summable families. Let T be a semiring6 equipped with a distance d which
makes it a topological semiring. We thus know precisely what means that an infinite
sequence

(
tn

)
n∈N

converges to a limit t when n tends to infinity. We must now give
an equally precise meaning to the sum of an infinite family

(
ti
)

i∈I
and it turns out

6We temporarily change the symbol we use for a semiring on purpose: T not only plays the role
of K but also of K〈〈A∗〉〉 in this paragraph and the following.

Not to be circulated – 11 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

to be somewhat harder. The difficulty arises from the fact that we want a sort
of associativity–commutativity extended ‘to infinity’ and hence to ensure that the
result and its existence does not depend on an arbitrary order put on the set I of
indices.

We shall therefore define an ‘absolute’ method of summability, and a family will
be described as ‘summable’ if we can find an increasing sequence of finite sets of
indices, a sort of ‘kernels’, such that not only do partial sums on these sets tend to a
limit but above all that any sum on a finite set containing one of these kernels stays
close to this limit. More precisely:

Definition 9. A family
(
ti
)

i∈I
of elements of T indexed by an arbitrary set I is

called summable if there exists t in T such that, for all positive ε, there exists a
finite subset Jε of I such that, for all finite subsets L of I which contain Jε, the
distance between t and the sum of the ti for i in L is less than ε; that is:

∃t ∈ T , ∀ε > 0 ,

∃Jε finite , Jε ⊂ I , ∀L finite , Jε ⊆ L ⊂ I d
(∑

i∈L

ti, t

)
� ε .

The element t thus defined is unique and is called the sum of the family
(
ti
)

i∈I
.

The sum just defined is equal to the usual sum if I is finite, and we write:

t =
∑
i∈I

ti .

We say that a family of series
(
si
)

i∈I
is locally finite if for every w in A∗ there is

only a finite number of indices i such that 〈si, w〉 is different from 0K.

Property 10. A locally finite family of power series is summable.

This simple property is a good example of what the topological structure placed
on K〈〈A∗〉〉 brings in. That we can define a sum for a locally finite family of series is
trivial: pointwise addition is defined for every w, independently of any assumption
about K. To say that the family is summable adds extra information: it ensures
that partial sums converge to the result of pointwise addition.

For every series s, the family of series {〈s, w〉w | w ∈ A∗} , where w is identified
with its characteristic series, is locally finite, and we have

s =
∑

w∈A∗
〈s, w〉w ,

which is the usual notation for series and which is thus justified. We also deduce
from this notation that K〈A∗〉 is dense in K〈〈A∗〉〉. Along the same line, the sum
in Corollary 8 is locally finite since for each pair of indices (p, q), the supports of
all

(
En

p,q

)
n∈N

are pairwise disjoint, hence the sum is well-defined.
Property 10 extends beyond locally finite families and generalises to a proposition

which links the summability of a family of series and that of families of coefficients.

Work in Progress – 12 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Property 11. A family
(
si

)
i∈I

of series of K〈〈A∗〉〉 is summable with sum s if and
only if, for every w in A∗, the family

(
〈si, w〉

)
i∈I

of elements of K is summable
with sum 〈s, w〉 .

2.2.2 The star operation.

Let t be an element of a topological semiring T; it is possible for the family
(
tn

)
n∈N

to be, or not to be, summable. If it is summable, we call its sum the ‘star of t’ and
write it t∗:

t∗ =
∑
n∈N

tn ..

Whether t∗ is defined or not depends on t, on T, on the distance on T, or on a
combination of all these elements. For example, (0T)∗ = 1T is defined for all T and
any topology on T; if T = Q , we have (1

2)∗ = 2 if Q is equipped with the natural
topology, or undefined if the chosen topology is the discrete topology, while 1∗ is not
defined in either case.

The U identity

Lemma 12. Let T be a topological semiring and t an element of T whose star is
defined. We have the double equality

t∗ = 1T + t t∗ = 1T + t∗t . (U)

Proof. We obviously have t�n = 1T + t t<n = 1T + t<nt . As lim t<n = lim t�n = t∗ ,
and as addition and multiplication are continuous operations on T, we obtain (U)
by taking the limit of each side of the above equation.

Remark 13. If T is a topological ring, and if the star of t is defined, (U) can be
written t∗ − t t∗ = t∗ − t∗t = 1 or (1 − t) t∗ = t∗(1 − t) = 1 and so t∗ is the inverse
of 1 − t . Hence the classic identity

t∗ =
1

1 − t
= 1 + t + t2 + · · · (2.2)

is justified in full generality. It also means that forming the star can be considered
as a substitute of taking the inverse in a poor structure that has no inverse.

Star of proper series By analogy with polynomials and series in one variable,
we call constant term of a series s of K〈〈A∗〉〉 the coefficient in s of the empty word,
the neutral element of A∗. A series is called proper if its constant term is zero. The
sum of two proper series is a proper series; the product of a proper series with any
other series is a proper series. If s is proper, the family

(
sn

)
n∈N

is locally finite
and thus the star of a proper series of K〈〈A∗〉〉 is defined.

Not to be circulated – 13 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

In view of further developments, we take the following definition and notation.
Let s be a series of K〈〈A∗〉〉; the proper part of s is the proper series that coincides
with s for all the elements w of A∗ other than 1A∗ . It is convenient to write s0 = c(s)
for the constant term of s, and sp for the proper part of s:

c(sp) = 〈sp, 1A∗〉 = 0K and ∀ w ∈ A∗ \ 1A∗ 〈sp, w〉 = 〈s, w〉 ,

and we write s = s0 + sp (rather than s = s0 1A∗ + sp).

2.2.3 The set of rational series.

The (K-)rational operations on K〈〈A∗〉〉 are:

(i) the K-algebra operations, that is:

• the left and right exterior multiplications by elements of K;

• the (pointwise) addition;

• the (Cauchy) product;

(ii) the star operation, which is not defined everywhere.

Point (ii) leads us to tighten the notion of closure: a subset E of K〈〈A∗〉〉 is closed
under star if for every series s in E such that s∗ is defined, then s∗ belongs to E .

A subset of K〈〈A∗〉〉 is rationally closed if it is closed under the rational opera-
tions; that is, if it is a sub-algebra of K〈〈A∗〉〉 closed under the star operation. The
intersection of any family of rationally closed subsets is rationally closed and thus the
rational closure of a set E is the smallest rationally closed subset which contains E ,
written KRat E .

Definition 14. A series of K〈〈A∗〉〉 is K-rational if it belongs to the rational closure
of K〈A∗〉, the set of polynomials on A∗ with coefficients in K. The set of K-rational
series (over A∗ with coefficients in K) is written KRat A∗.

If the monoid A∗ is implied by the context, we shall say K-rational series, or
just rational series, if K is also understood.

Example 15. (i) Let A∗ be the one-generator free monoid {x}∗ and K be a
field F. Then FRat x∗ is exactly the set of series developments of (F-)rational func-
tions (that is, quotients of two polynomials) and this is where the name rational —
rather the more common regular (for expressions and languages) — comes from.

(ii) If K = B , we simply write Rat A∗ for BRat A∗ and its elements are the
rational languages (or rational subsets) of A∗.

Work in Progress – 14 – 21 January 2019

Lecture notes Weighted Automata and Transducers

2.3 The Fundamental Theorem of Finite Automata

We have then defined all notions that are necessary to establish a first characterisa-
tion of the behaviour of finite weighted automata. Almost all, indeed. The missing
one is that of strong semiring which we will explained later. It insures that the
semiring is ‘regular enough’ to allow a ‘natural’ computation for the star of a non
proper series. All the semirings that we have mentioned above are strong and this
hypothesis is not really restrictive. However, we have to include it in the following
statement, for sake of correctness.

Theorem 16. Let K be a strong semiring. A series of K〈〈A∗〉〉 is rational if and
only if it is the behaviour of some finite K-automaton over A∗.

The qualificative fundamental we give to this theorem — as well as the differ-
entiation from the statement usually called ‘Kleene Theorem’ — is justified by the
fact that the same statement holds for series over other monoids than free ones, over
graded monoids as we shall see below, and even over others that will not be con-
sidered here. In less formal words, this statement amounts to say that, under mild
and natural assumptions, the descriptive or computational power of finite graphs is
exactly the same as the one of the star operator (in presence of algebra operations
of course).

Theorem 16 sttates the equality of two families of series. Its proof consists in
showing two inclusions.

2.3.1 Behaviours of finite weighted automata are rational series

Proposition 17. The behaviour of a finite K-automaton over A∗ is a rational series
of K〈〈A∗〉〉.

The proof of Proposition 17 is based on a fundamental property.

Lemma 18 (Arden). Let s and t be two series of K〈〈A∗〉〉; if s is a proper series,
each of the equations

X = sX + t (2.3)
and X = X s + t (2.4)

has a unique solution: the series s∗t and ts∗ respectively.

Proof. In (U), we replace t by s and multiply on the left (resp. on the right) by t

and we obtain that s∗t (resp. ts∗) is a solution of (2.3) (resp. of (2.4)). Conversely,
if u is a solution of the equation X = t + sX ,

u = t + su =⇒ u = t + s t + s2u = · · · = s<nt + snu

holds for all integers n. Since s is proper, and multiplication continuous,
limsn = limsnu = 0 ,holds, from which follows u = lim (s<nt) = (lims<n) t = s∗t.

Not to be circulated – 15 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

From which we deduce:

Proposition 19. Let s and t be two proper series of K〈〈A∗〉〉; the following equalities
(or identities) hold:

(s + t)∗ = s∗(ts∗)∗ = (s∗t)∗s∗ , (S)
(s t)∗ = 1 + s (ts)∗t , (P)

∀n ∈ N s∗ = s<n(sn)∗ . (Zn)

The identity (S) is called the sum-star identity, (P) the product-star identity.

Remark 20. It follows by Lemma 4 that a square matrix m of dimension Q with
elements in K〈〈A∗〉〉 is a proper series of KQ×Q〈〈A∗〉〉 if all its elements are proper
series; (we say in this case that m is proper), and hence that the identities S, P
and Zn are satisfied by proper matrices.

Proof of Proposition 17. Let A = 〈 I, E, T 〉 be an automaton whose behaviour is
thus defined and equal to |||A||| = I · E∗ · T . This part then amounts to prove that
the entries of the star of a proper matrix E belong to the rational closure of the
entries of E, a classical statement established in general in different setting.

We write |||A||| = I · V with V = E∗ · T . Since E is proper and by Lemmas 4
and 18, V is the unique solution of

X = E · X + T (2.5)

and we have to prove that all entries of the vector V belong to the rational closure
of the entries of E. Lemma 18 already states that the property holds if A is of
dimension 1. For A of dimension Q, we write (2.5) as a system of ‖Q‖ equations:

∀p ∈ Q Vp =
∑
q∈Q

Ep,qVq + Tp . (2.6)

We choose (arbitrarily) one element q in Q and by Lemma 18 again it comes:

Vq = E∗
q,q

 ∑
p∈Q\{q}

Eq,pVp + Tq

 ,

an expression for Vq that can be substituted in every other equations of the sys-
tem (2.6), giving a new system

∀p ∈ Q \ {q} Vp =
∑

r∈Q\{q}

[
Ep,r + Ep,qE∗

q,qEq,r

]
Vr + Ep,qE∗

q,qTq + Tp .

And the property is proved by induction hypothesis.

Work in Progress – 16 – 21 January 2019

Lecture notes Weighted Automata and Transducers

2.3.2 Rational series are behaviours of finite weighted automata

The converse of Proposition 17 reads as follow.

Proposition 21. If K is a strong semiring and if s is in KRat A∗, there exixts a
finite K-automaton over A∗ whose behaviour is equal to s.

We prove indeed that the family of behaviours of finite K-automata over A∗ con-
tains the polynomials (the characterisitic series of every letter indeed) and is closed
under the exterior multiplication, the sum, the product, and, under the assump-
tion of strongness of K, under star. It follows from Definition 14 that this family
contains KRat A∗.

In order to establish the closure properties, it is convenient to define a restricted
class of automata, called the standard automata.

Standard automata

Definition 22. A K-automaton A = 〈 I, E, T 〉 is standard if the initial vector I

has a single non-zero entry i , equal to 1K, and if this unique initial state i is not
the destination of any transition whose label is non-zero.

In matrix terms, a standard automaton A can be written

A =
〈(

1 0
)

,

 0 K

0 F

 ,

 c

U


〉

, (2.7)

since the entries of the i-th column of E are (sums of the) weighted labels of the
transitions the destination of which is i. The definition does not forbid the initial
state i from also being final; that is, the scalar c is not necessarily zero. This value
c is the constant term of |||A||| . the following does not participate to the proof of
Proposition 21 but tells that standard automata are not ‘too special’.

Proposition 23. Every automaton A is equivalent to a standard automaton whose
weighted labels are linear combinations of the weighted labels of A.

We now define operations on standard automata that are parallel to the rational
operations. Let A (as in (2.7)) and A′ (with obvious translation) be two standard
automata; the following standard K-automata are defined:

• k A =
〈(

1 0
)
,

 0 k K

0 F

,

 k c

U


〉

and Ak =
〈(

1 0
)
,

 0 K

0 F

,

 ck

U k


〉

;

Not to be circulated – 17 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

• A + A′ =
〈(

1 0 0
)
,



0 K K ′

0 F 0

0 0 F ′


,



c + c′

U

U ′


〉

;

• A · A′ =
〈(

1 0 0
)
,



0 K cK ′

0 F H

0 0 F ′


,



cc′

V

U ′


〉

,

where H = (U · K ′) · F ′ and V = U c′ + (U · K ′) · U ′ ;

• A∗ =
〈(

1 0
)
,

 0 c∗K

0 G

,

 c∗

U c∗


〉

,

which is defined if and only if c∗ is defined, and where G = U · c∗K + F .
Some figures may help visualize these constructions. Let A = 〈 {i}, E, T 〉 and

A′ = 〈 {j}, E′, T ′ 〉 be two standard automata drawn as:

i

p

q

r

c Uq

Ur
Kp

Kq

A j

s

t

u

c′ U ′
t

U ′
uK ′

s

K ′
t

A′

Then k A and Ak are drawn as:

i

p

q

r

k c Uq

Ur
k Kp

k Kq

k A i

p

q

r

c k Uq k

Ur kKp

Kq

Ak

and A · A′ , A + A′ , and A∗ are respectively drawn as:

i

p

q

r

c c′

Uq c′

Ur c′
Kp

Kq

s

t

u

U ′
t

U ′
u

c K ′
s

c K ′
t

Uq K ′
s

Uq K ′
t

Ur K ′
s

Ur K ′
s

A · A′

Work in Progress – 18 – 21 January 2019

Lecture notes Weighted Automata and Transducers

p

q

r

c + c′

Uq

Ur

Kp

Kq

s

t

u

U ′
t

U ′
u

K ′
s

K ′
t

A + A′ i

p

q

r

c∗
Uqc∗

Urc∗
c∗ Kp

c∗ Kq

Ur c∗ Kp

Ur c∗ Kq

Uq c∗ Kp Uq c∗ Kq

A∗

Straightforward computations show

Proposition 24.
k A = k A , Ak = A k , A + A′ = A + A′ , and A · A′ = A A′ .

As expected, the case of the star operator is somewhat more complex. The
automaton A∗ is defined if and only if c∗ is defined; let A p be the proper part of
the series A . Then we have:

Proposition 25. A∗ = c∗ (A p c∗)∗ .

The last step being given by the following which will be established in the next
subsection after the definition of strong semirings.

Proposition 26. Let K be a strong topological semiring and A∗ a free monoid. Let s

be a series of K〈〈A∗〉〉, s0 its constant term and sp its proper part. Then s∗ is defined
if and only if s∗

0 is defined and in this case we have

s∗ = (s∗
0 sp)∗s∗

0 = s∗
0(sp s∗

0)∗ . (2.8)

Corollary 27. If K is a strong topological semiring, then A∗ = A ∗ .

Proof of Proposition 21. A trivial construction shows that the family of behaviours
of standard automata contains the characteristic series of any letter of A, Proposi-
tion 24 that it contains the polynomials, Proposition 24 and Corollary 27 that it is
rationally closed, and hence contains KRat A∗.

Strong semirings As stated by Proposition 26, strong semirings give a framework
in which the question whether the star of an arbitrary series, not necessarily proper,
is defined or not can be given an answer and, when defined, how the star can be
computed.

Definition 28. A topological semiring is strong if the product of two summable
families is a summable family; that is, if the two families

(
si
)

i∈I
and

(
tj
)

j∈J
are

summable with sum s and t respectively, then the family {si tj | (i, j) ∈ I×J} is
summable with sum s t .

Not to be circulated – 19 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

All the semirings which we shall consider are strong: semirings equipped with
the discrete topology, the sub-semirings of Cn (equipped with the natural topology),
and the positive semirings. We then easily verify:

Property 29. The semirings of matrices and the semirings of series on A∗, with
coefficients in a strong semiring, are strong.

Remark 30. The notion of strong semiring has been introduced in EAT in order to
have a sufficient condition for the proof of Proposition 26. Since then, the question
was open whether there exist semirings that are not strong, although the answer
was likely to be positive. An example of a non strong semiring has been given very
recently by my colleague David Madore. The question whether there exist semirings
in which (2.8) does not hold is still open.

Remark 31. Along the line of Remark 13, it holds that if K is a ring, a series
of K〈〈A∗〉〉 is invertible if, and only, if its constant term is invertible.

Proof of Proposition 26. The condition is necessary since 〈sn, 1A∗〉 = s0n and, if s∗

is defined, the coefficients of 1A∗ in
(
sn

)
n∈N

form a summable family.
Conversely, assume that

(
sn

0
)

n∈N
is summable, with sum s∗

0 . For all pairs of
integers k and l, set

Pk,l =
∑

i0,i1,...,ik∈N
i0+i1+···+ik=l

si0
0 sp si1

0 sp · · · s
ik−1
0 sp sik

0 .

By convention, set P0,l = sl
0 and Pk,0 = sk

p . We verify by inspection that, for all
integers n

sn = (s0 + sp)n =
l=n∑
l=0

Pn−l,l . (2.9)

By induction on k, we will show that the family

Fk = {si0
0 sp si1

0 sp · · · s
ik−1
0 sp sik

0
∣∣ i0, i1, . . . , ik ∈ N}

is summable in KA∗, with sum

Qk = (s∗
0 sp)k s∗

0 = s∗
0 (sp s∗

0)k .

In fact, the hypothesis on s0 ensures the property for k = 0, and also that the family
G = {s0n sp | n ∈ N} is summable in K〈〈A∗〉〉, with sum s0∗sp . The family Fk+1 is
the product of the families G and Fk and the assumption that K, and hence K〈〈A∗〉〉,
is strong gives us the conclusion.

Hence we deduce that, for each k, the family {Pk,l | l ∈ N} is summable, with
sum Qk. The family {Qk | k ∈ N} is locally finite, hence summable, with sum

t =
∞∑

k=0
Qk = (s∗

0 sp)∗ s∗
0 = s∗

0 (sp s∗
0)∗ .

Work in Progress – 20 – 21 January 2019

Lecture notes Weighted Automata and Transducers

l

k

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

1 s0 s02 s03

sp

sp2

sp3

(s0 + sp)n

Qk

Pk,l

s0sp + sps0

Figure 2: A graphical representation of Proposition 26

We can now easily finish the proof by showing that the ‘doubly indexed’ family
{Pk,l | k, l ∈ N} is summable, with sum t . Equation (2.9), then ensure that the

family
(
sn

)
n∈N

is summable with sum t .

In the same spirit as Remark 20, we note that (2.8) holds for every matrix m such
that the star of its matrix of constant terms is defined. A particularly interesting
case of this is where the matrix of constant terms is a strict upper triangular matrix.

2.4 Generalisation to graded monoids

Graded monoids. For the Cauchy product be always defined on K〈〈M〉〉, inde-
pendently of K, it is necessary (and sufficient) that, for every m in M , the set of
pairs (u, v) such that uv = m is finite – we will say that m is finitely decomposable.

The construction of series over A∗, which generalises that of series of one variable,
shows that it is from the length of words in A∗ that we build a topology on K〈〈A∗〉〉 .
The existence of an additive length is the main assumption that we shall make
about M .

Definition 32. Let M be a monoid. A function ϕ : M → N is a length on M if:
(i) ϕ(m) is strictly positive for all m other than 1M ;
(ii) ∀m, n ∈ M ϕ(mn) � ϕ(m) + ϕ(n) .

We shall say that a length is a gradation if it is additive; that is, if:
(iii) ∀m, n ∈ M ϕ(mn) = ϕ(m) + ϕ(n) ;

and that M is graded if it is equipped with a gradation.

Example 33. (i) Every free monoid is graded.
(ii) Every cartesian product of free monoids, in particular, every free commutative

monoid, and, more generally, every trace (or free partially commutative) monoid is
graded.

Not to be circulated – 21 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

The definition implies that ϕ(1M) = 0 and that a finite monoid, more generally
a monoid that contains an idempotent other than the identity (for example, a zero),
cannot be equipped with a gradation. Any group, finite or infinite, is not a graded
monoid.

Proposition 34. In a finitely generated graded monoid, the number of elements
whose length is less than an arbitrary given integer n is finite.

In other words, every element of a graded monoid M can only be written in a
finite number of different ways as the product of elements of M other than 1M . We
can deduce in particular:

Corollary 35. In a finitely generated graded monoid, every element is finitely de-
composable.

Note that a finite monoid is not graded, but that every element is nonetheless
finitely decomposable. From Corollary 35, we deduce the proposition aimed at by
Definition 32:

Proposition 36. Let M be a finitely generated graded monoid and K a semiring.
Then K〈〈M〉〉, equipped with the Cauchy product, is a semiring and a (left and right)
algebra7 over K.

The Fundamental Theorem of Finite Automata (bis). After Proposition 36,
the whole theory developed in Sec. 2.2 and 2.3 can be repeated, mutatis mutandis,
while replacing the free monoid A∗ with any graded monoid M . In particular, we
state:

Definition 37. A series of K〈〈M〉〉 is K-rational if it belongs to the rational closure
of K〈M〉, the set of polynomials on M with coefficients in K. The set of K-rational
series (over M with coefficients in K) is written KRat M .

Example 38. (i) The series s =
∑

n∈N(n + 1)(an, bn) =
(
(a, b)∗)2 belongs to

NRat ({a}∗×{b}∗).
(ii) If R ∈ Rat A∗ and S ∈ Rat B∗, then R×S ∈ Rat (A∗×B∗).

And it holds:

Theorem 39. Let K be a strong semiring and M a graded monoid. A series
of K〈〈M〉〉 is rational if and only if it is the behaviour of some finite K-automaton
over M .

7If K is a ring, K〈〈M〉〉 is even what is classically called a graded algebra, which is the origin of
the terminology chosen for graded monoids.

Work in Progress – 22 – 21 January 2019

Lecture notes Weighted Automata and Transducers

3 Recognisability

The second characterisation of the behaviour of finite weighted automata as series
realised by representations will be central in many developments to come in these
lectures. In contrast with the preceding one, it holds for series over a free monoid
only.

3.1 K-representations and K-recognisable series

A K-representation of A∗ of dimension Q is a morphism µ from A∗ to the (multiplic-
ative) monoid of square matrices of dimension Q with entries in K. By definition,
indeed, for the multiplication of matrices be well-defined, the dimension Q is finite.
A K-representation of A∗ (of dimension Q) is also the name we give to a triple
〈 I, µ, T 〉 where, as before,

µ : A∗ −→ KQ×Q

is a morphism and where I and T are two vectors:

I ∈ K1×Q and T ∈ KQ×1 ;

that is, I is a row vector and T a column vector, of dimension Q, with entries in K.
Such a representation defines a map from A∗ to K by

∀w ∈ A∗ w �−→ I · µ(w) · T ;

that is, the series s:
s =

∑
w∈A∗

(I · µ(w) · T)w .

The series s of K〈〈A∗〉〉 is realised, or recognised, by the representation 〈 I, µ, T 〉. We
also say that 〈 I, µ, T 〉 realises, or recognises, the series s.

Definition 40. A series of K〈〈A∗〉〉 is K-recognisable if it is recognised by a K-repre-
sentation. The set of K-recognisable series over A∗ is written KRec A∗.

Example 41 (Example 3 cont.). Let 〈 I1, µ1, T1 〉 be the representation defined by

µ1(a) =
(

1 0
0 1

)
, µ1(b) =

(
1 1
0 1

)
, I1 =

(
1 0

)
and T1 =

(
0
1

)
.

For all w in {a, b}∗, I1 · µ1(w) · T1 = |w|b holds, hence the series t1 =
∑

w∈A∗ |w|b w

is N-recognisable.

Proposition 42. Every finite linear combination, with coefficients in K, of K-reco-
gnisable series over A∗ is a K-recognisable series.

Not to be circulated – 23 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Proof. Let s and t be two K-recognisable series over A∗, respectively recognised
by the K-representations 〈 I, µ, T 〉 and 〈 J, κ, U 〉. For all k in K the series k s is
recognised by the representation 〈 k I, µ, T 〉, the series sk by the representation
〈 I, µ, T k 〉, and the series s + t by the representation 〈 K, π, V 〉 defined by the
following block-decomposition:

K =
(
I J

)
, π(w) =

(
µ(w) 0

0 κ(w)

)
, V =

(
T

U

)
.

Every morphism of semirings ϕ : K → L extends to a morphism from K〈〈A∗〉〉
to L〈〈A∗〉〉, still denoted by ϕ, by the pointwise map: for every s in K〈〈A∗〉〉, ϕ(s) is
defined by 〈ϕ(s) , w〉 = ϕ(〈s, w〉) for every w in A∗. If 〈 I, µ, T 〉 is a representation
of the series s of K〈〈A∗〉〉, then 〈 ϕ(I) , ϕ ◦ µ, ϕ(T) 〉 is a representation of ϕ(s). It
then follows:

Proposition 43. Let ϕ : K → L be a morphism of semirings. The image under ϕ

of a K-recognisable series over A∗ is an L-recognisable series over A∗.

Consistency with the classical definition of recognisable sets. For K = B,
Definition 40 coincides indeed with the definition of the recognisable subsets of a
monoid as the sets that are saturated by a congruence of finite index.

If s is a B-recognisable series over A∗, realised by the representation 〈 I, µ, T 〉,
then µ : A∗ → BQ×Q is a morphism from A∗ to a finite monoid. The series s

of B〈〈A∗〉〉, s =
∑

w∈A∗(I · µ(w) · T)w ,can be seen as the subset s = µ−1(P) of A∗

where P =
{

p ∈ BQ×Q
∣∣∣ I · p · T = 1B

}
.

Conversely, a morphism α from A∗ into a finite monoid N is a morphism from A∗

into the monoid of Boolean matrices of dimension N (the representation of N by right
translations over itself) and the B-representation that realises any subset recognised
by α easily follows.

3.2 The key lemma

The specificity of the free monoid in terms of representation is expressed in the
following statement.

Lemma 44. Let K be a semiring and A a finite alphabet. Let Q be a finite set and
µ : A∗ → KQ×Q a morphism. We set

X =
∑
a∈A

µ(a) a .

Then, for every w in A∗, 〈X∗, w〉 = µ(w) holds.

Work in Progress – 24 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Proof. The matrix X is a proper series of KQ×Q〈〈A∗〉〉 and hence X∗ is defined. We
first prove, by induction on the integer n, that

Xn =
∑

w∈An

µ(w) w ,

an equality trivially verified for n = 0 , and true by definition for n = 1 . It follows
that

Xn+1 = Xn · X =
(∑

w∈An

µ(w) w
)

·
(∑

a∈A

µ(a) a
)

=
∑

(w,a)∈An×A

(
µ(w) · µ(a)

)
w a

=
∑

(w,a)∈An×A

µ(w a) w a =
∑

v∈An+1

µ(v) v ,

since, for each integer n, An+1 is in bijection with An×A as A∗ is freely generated
by A. For the same reason, A∗ is the disjoint union of the An, for n in N, and it
follows that, for every w in A∗:

〈X∗, w〉 = 〈X |w|, w〉 = µ(w) .

Example 45 (Example 3 cont.). Take K = N and A∗ = {a, b}∗ . Then(
a + b b

0 a + b

)
= µ1(a) a + µ1(b) b with µ1(a) =

(
1 0
0 1

)
, µ1(b) =

(
1 1
0 1

)
.

3.3 The Kleene–Schützenberger Theorem

We can now get to our main point: finite K-automata over A∗ and K-representations
of A∗ are one and a same thing when A is finite. We state this under the classical form
but we are really interested by the transformations of automata into representations
and conversely.

Theorem 46 (Kleene–Schützenberger). Let K be a strong semiring, and A a finite
alphabet. A series of K〈〈A∗〉〉 is K-rational if and only if it is K-recognisable. That
is:

KRec A∗ = KRat A∗ .

Proof. We prove the two inclusions, one at a time:

KRec A∗ ⊆ KRat A∗ and KRat A∗ ⊆ KRec A∗ . (3.1)

Each of the inclusions is proved in the form of a property and is obtained from the
Fundamental Theorem together with the freeness of A∗ and the finiteness of A by
means of the key Lemma 44.

Property 47. If A is finite, K-recognisable series on A∗ are K-rational.

Not to be circulated – 25 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Proof. Let 〈 I, µ, T 〉 be a representation which recognises a series s; that is, 〈s, w〉 =
I · µ(w) · T , for every w in A∗. Let 〈 I, X, T 〉 be the automaton defined by

X =
∑
a∈A

µ(a) a .

By Lemma 44, we have

s =
∑

w∈A∗

(
I · µ(w) · T

)
w = I ·

(∑
w∈A∗

(µ(w))w

)
· T = I · X∗ · T .

The series s is the behaviour of the K-automaton 〈 I, X, T 〉. Since A is finite this
automaton is finite and, by the Fundamental Theorem, s belongs to KRat A∗.

Property 48. If K is a strong semiring, K-rational series on A∗ are K-recognisable.

Proof. By Theorem 16, a K-rational series s is the behaviour of a finite K-automaton
〈 I, X, T 〉 and the entries of X are finite linear combinations of elements of A (and
those of I and T are scalar). We can therefore write X =

∑
a∈A µ(a) a where µ(a)

is the matrix of coefficients of the letter a in X. By Lemma 44, we have

∀w ∈ A∗ 〈s, w〉 = 〈I · X∗ · T, w〉 = I · µ(w) · T ,

and the series s is recognised by the representation 〈 I, µ, T 〉.

The two inclusions (3.1) prove the theorem.

On the basis of Theorem 46, we write an automaton A over A∗ indifferently as
A = 〈 I, E, T 〉 or as a representation A = 〈 I, µ, T 〉 with E =

∑
a∈A µ(a) a .

Example 49. (i) Generating function. Let L be a language of A∗. The
generating function gL of L is the series over one variable (written z in general):

gL =
∑
n∈N

an zn ,

such that, for every n in N, an is the number of words of L of length n.
Let A = 〈 I, µ, T 〉 be an unambiguous (Boolean) automaton of dimension Q and

L = A the language accepted by A, that is, the behaviour of the (N-)characteristic
automaton of A is a characteristic series: A = L . Let π be the Q×Q-matrix with
entries in N defined by:

π =
∑
a∈A

µ(a) .

Then, 〈 I, π, T 〉 is a representation of gL, that is, for every n in N, an = I · πn · T .
(ii) Probabilistic automata. A P ×Q-matrix with entries in R (or in Q) is

said to be stochatic if all entries are non negative and if the sum of all entries of every

Work in Progress – 26 – 21 January 2019

Lecture notes Weighted Automata and Transducers

row is equal to 1. An automaton over A∗, A = 〈 I, µ, T 〉 is said to be probabilistic
if I and µ(a), for every a in A, are stochastic and if T has 0-1 entries.

For every w in A∗, 〈 A , w〉 = I · µ(w) · T can be interpreted as the probability
of acceptance of w by A. Together with a probabilistic automaton A, any η in R,
0 ≤ η < 1, defines the langage

L (A, η) = {w ∈ A∗ | 〈 A , w〉 ≥ η}

and such a language is called a stochastic language. The family of stochastic lan-
guages strctly contains the one of rational languages.

Computation of coefficients. The description of automata as representations
leads to an efficient solution to the problem of computing the coefficient 〈s, w〉 of a
rational series s. Suppose that s is given by a finite automaton A = 〈 I, E, T 〉 or,
which is the same, by a representation A = 〈 I, µ, T 〉 of dimension n.

Then, 〈s, w〉 = I · µ(w) · T and the computation of µ(w) would cost O
(
�n3)

where � is the length of w; the last step to get I ·µ(w) ·T would add another O
(
n2).

But a smarter solution is possible. The computation of the succession of the �

vectors I ·µ(u) of Kn for all prefixes u of w would cost O
(
�n2) with a final overhead

of O (n) in order to get the result.
In the Boolean case, this method of computation for testing whether a word is

accepted or not by a non-deterministic automaton is known as the lazy or on-the-fly
determinisation.

3.4 The Hadamard product

The Hadamard product of series s and t, denoted by s � t, is indeed the product of
maps into a monoid:

∀w ∈ A∗ 〈s � t, w〉 = 〈s, w〉 〈t, w〉 .

The Hadamard product is defined on general series but it is its effect on recognisable
series which interests us, and we first define a product on representations.

Tensor product of K-representations. Let X be a matrix of dimension P × P ′

and Y a matrix of dimension R×R′ (with entries in the same semiring K); the tensor
product of X by Y , written X ⊗Y , is a matrix of dimension (P × R) × (P ′ × R′)
defined by

∀p ∈ P , ∀p′ ∈ P ′ , ∀r ∈ R , ∀r′ ∈ R′ X⊗Y (p,r),(p′,r′) = Xp,p′Yr,r′ .

If K is commutative, the tensor product is also commutative, and we keep this
hypothesis in this subsection. The next statement, a classical equation in matrix
calculus, is a matter of an easy verification.

Not to be circulated – 27 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Lemma 50. Let K be a commutative semiring. Let X, Y , U and V be four matrices
with entries in K, respectively of dimension P ×Q, P ′×Q′, Q×R and Q′×R′.

(X⊗Y) · (U ⊗V) = (X · U)⊗(Y · V) .

It then follows:

Proposition 51 (Tensor product of representations). Let K be a commutative semi-
ring. Let µ : A∗ → KQ×Q and κ : A∗ → KR×R be two representations. The map
µ ⊗ κ, defined for all (u, v) in A∗×A∗ by

[µ ⊗ κ] (u, v) = µ(u)⊗κ(v)

is a representation of A∗×A∗ in K(Q×R)×(Q×R) .

Proof. For all (u, v) and (u′, v′) in A∗×A∗, we have:

(
[µ ⊗ κ] (u, v)

)
·
(
[µ ⊗ κ] (u′, v′)

)
=

(
µ(u)⊗κ(v)

)
·
(
µ
(
u′)⊗κ

(
v′))

=
(
µ(u) · µ

(
u′))⊗

(
κ(v) · κ

(
v′))

= µ
(
uu′)⊗κ

(
v v′) = [µ ⊗ κ] (uu′, v v′) .

Hadamard product of recognisable series. The Hadamard product is to series
what intersection is to sets, which really makes sense only if the semiring of coeffi-
cients is commutative.

Theorem 52 (Schützenberger). Let K be a commutative semiring. Then KRec A∗

is closed under Hadamard product.

Proof. Let s realised by 〈 I, µ, T 〉 and t realised by 〈 J, κ, U 〉 be two series in KRec A∗.
Since the map w �→ (w, w) is a morphism from A∗ to A∗×A∗, Proposition 51 implies
that the map w �→ µ(w) ⊗ κ(w) is also a morphism, and we also write it µ ⊗ κ .

By definition we have, for all w in A∗,

〈s�t, w〉 = (I · µ(w) · T) (J · κ(w) · U) = (I · µ(w) · T)⊗(J · κ(w) · U)

the second equality expressing the product of two elements of K as the tensor product
of two 1×1 matrices. Lemma 50 (applied three times) yields:

〈s�t, w〉 = (I⊗J) · (µ(w)⊗κ(w)) · (T ⊗U) = (I⊗J) · ([µ ⊗ κ](w)) · (T ⊗U) .

Since K is commutative, µ ⊗ κ is a K-representation, and s � t is recognisable and
realised by (I⊗J, µ ⊗ κ, T ⊗U) .

Work in Progress – 28 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Remark 53. Lemma 50, Proposition 51 and then the proof of Theorem 52 hold in-
deed under the weaker hypothesis that every entry of one representation commutes
with every entry of the other. It is the case in particular when one of the series
is characteristic or, more prececisely, when one of the series is realised by a char-
acteristic representation, with obvious meaning. This setting will also be the one
of transducers and relations — automata and series over direct products of free
monoids — and their composition (see Exercise 15. and Lect. V).
Remark 54. As a consequence of Theorem 46, the Hadamard product of two K-
rational series on A∗ is a K-rational series (if K is a commutative semiring, or if one
is characteristic). Moreover, the tensor product of representations of A∗ translates
directly into a construction on K-automata over A∗ whose labels are linear combin-
ations of letters of A, which is the natural generalisation of the Cartesian product
of Boolean automata, and which we can call the tensor product of K-automata.

More precisely, if A = 〈 I, E, T 〉 and B = 〈 J, F, U 〉 are two automata of
dimension Q and R respectively, then A⊗B = 〈 I⊗J, E⊗F, T ⊗U 〉 where

(E⊗F)(p,r),(q,s) = Ep,q � Fr,s

for every p, q in Q and every r, s in R.

C2

b
a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Figure 3: C2 = C1⊗C1, the tensor product of C1 by itself

Example 55. The N-automaton C2 of Fig.3 is the Hadamard product of the N-
automaton C1 of Fig.1 by itself. Therefore, for every w in A∗, 〈 C2 , w〉 = w2 holds.

4 Exercises

1. Semiring structure. Is M = 〈N, max, +, 0, 0 〉 a semiring?

2. Positive semiring. Give an example of a semiring in which the sum of any two non-zero
elements is non-zero but which is not positive. [Hint: consider a sub-semiring of N2×2.]

3. Example of N-automaton. (a) Compute the coefficient of a3ba2ba in the series
realised by the N-automaton:

a

b

a a

Not to be circulated – 29 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

(b) Give the general formula for the coefficient of every word of A∗.

4. Examples of Nmin, Nmax-automata. Let E1 be the Nmin-automaton over {a}∗ shown
in Fig. 4 (a) and E2 the Nmax-automaton shown in the same figure. Similarly, let E3 and E4
be the Nmin and Nmax-automata shown in Fig. 4 (b).

Give a formula for 〈 E1 , an〉, 〈 E2 , an〉, 〈 E3 , an〉, and 〈 E4 , an〉.

0
0 0

a |1
a |1 a |2

(a) The automata E1 and E2

0
0 0

a |2
a |2 a |1

(b) The automata E3 and E4

Figure 4: Four ‘tropical’ automata

5. A Z-automaton. Build a Z-automaton D1 such that 〈 D1 , w〉 = |w|a −|w|b , for every w

in A∗.

6. Support of Z-automata. Give an example of a Z-automaton A such that the inclusion
supp (A) ⊆ supp A is strict.

7. Automata construction. Let a∗ be the characteristic N-series of a∗ : a∗ =
∑

n∈N
an .

Give an ‘automatic’ proof (that is, by means of automata constructions) for:

(a∗)2 =
∑
n∈N

(n + 1)an .

8. Shortest run and Nmin-automata. Build a Nmin-automaton F1 such that, for every w

in A∗, 〈 F1 , w〉 is the minimal length of runs of ‘a’ ’s in w, that is, if w = an0 ban1 b · · · ank−1 bank ,
then 〈 F1 , w〉 = min{n0, n1, . . . , nk}.

9. Identification of a Q-automaton. Show that the final function of the Q-automaton Q2
over {a}∗ depicted on the right in Figure 5 (where every transition is labelled by a | 1) can
be specified in such a way the result is equivalent to Q1 depicted on the left.

1

1

a |2

1

1

1/4

?

? ?

?

?

Figure 5: Two Q-automata

10. Ambiguous automata. Show that it is decidable whether a Boolean automaton is
unambiguous or not. [Hint: Note that this is not a result nor a proof on weighted automata
but on Boolean automata. It is put here in view of Example 49.]

Work in Progress – 30 – 21 January 2019

Lecture notes Weighted Automata and Transducers

11. Representation with finite image. Let s be a K-recognisable series of A∗, realised
by a representation 〈 I, µ, T 〉 of dimension Q. Show that if µ(A∗) is a finite submonoid
of KQ×Q, then, for every k in K the set s−1(k) = {w ∈ A∗ | 〈s, w〉 = k} is a recognisable
language of A∗.

12. Support of Z-rational series. (a) Give an example of a Z-rational series over A∗

whose support is not a recognisable language of A∗.

(b) Give an example of a Z-rational series over A∗ which is an N-series (that is, all
coefficients are non-negative) and which is not an N-rational series over A∗.

13. Support of Z-rational series. (a) Prove that the support of an N-rational series
over A∗ is a recognisable language of A∗.

(b) Let s be in NRec A∗. Prove that for any k in N, the sets
s−1(k) = {w ∈ A∗ | 〈s, w〉 = k} and s−1(k + N) = {w ∈ A∗ | 〈s, w〉 � k}

are recognisable languages of A∗.

(c) Give an example of a Z-rational series s over A∗ such that there exists an integer z

such that s−1(z) is not a recognisable language of A∗.

14. Support of Zmin-rational series. (a) Let s be a Nmin-rational series over A∗.
Prove that for any k in N, the sets

s−1(k) = {w ∈ A∗ | 〈s, w〉 = k} and s−1(k + N) = {w ∈ A∗ | 〈s, w〉 � k}
are recognisable languages of A∗.

(b) Give an example of a Zmin-rational series s over A∗ such that there exists an integer z

such that s−1(z) is not a recognisable language of A∗.

15. Recognisable series in direct product of free monoids. Let K be a commutative
semiring. The two semirings K〈〈A∗〉〉 and K〈〈B∗〉〉 are canonically subalgebras of K〈〈A∗×B∗〉〉;
the injection is induced by

u �→ (u, 1B∗) and v �→ (1A∗ , v) ,

for all u in A∗ and all v in B∗. Modulo this identification, a product (k u) (hv) is written
k h (u, v) and the extension by linearity of this notation gives the following definition.
Definition 56. Let s be in K〈〈A∗〉〉 and t be in K〈〈B∗〉〉. The tensor product of s and t,
written s ⊗ t , is the series of K〈〈A∗×B∗〉〉 defined by:

∀(u, v) ∈ A∗×B∗ 〈s ⊗ t, (u, v)〉 = 〈s, u〉 〈t, v〉 .

On the other hand, K-recognisable series over a non-free monoid M are defined, exactly as the
K-recognisable series over a free monoid, as the series realised by a K-representation 〈 I, µ, T 〉,
where µ is a morphism from M into KQ×Q.

Establish:
Proposition 57. A series s of K〈〈A∗×B∗〉〉 is recognisable if and only if there exists a finite
family {ri}i∈I of series of KRec A∗ and a finite family {ti}i∈I of series of KRec B∗ such
that

s =
∑
i∈I

ri ⊗ ti .

Not to be circulated – 31 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

16. Distance on the semirings of series.

A distance on any set S is a map d : S ×S → R+ with the three properties: for all x, y

and z in S it holds:
(i) symmetry: d (x, y) = d (y, x) ;
(ii) positivity: d (x, y) = 0 ⇔ x = y ;
(iii) triangular inequality: d (x, z) � d (x, y) + d (y, z) .

If (iii) is replaced by the stronger property:
(iv) triangular inequality: d (x, z) � max (d (x, y) , d (y, z)) ,

then d is said to be an ultrametric distance.

(a) Show that the function defined on S by

∀x, y ∈ S d (x, y) =

{
0 if x = y

1 otherwise

is an ultrametric distance. We call it the discrete distance on S.

Classically, a sequence
(
sn

)
n∈N

of elements of S converges to s in S for the distance d if:

∀ε > 0 ∃N ∈ N ∀n > N d (sn, s) < ε .

In this way, a distance d defines a topology on S.

(b) Show that if S is equipped with the discrete distance, the only convergent sequences
are the ultimately stationnary sequences.

Two distances on S are equivalent if the same sequences converge, that is, d and d′ are
equivalent if for any sequence s =

(
sn

)
n∈N

, s converges for d if and only if it converges
for d′.

(c) Show that one can always assume that a distance is bounded by 1, that is, if d is a
distance on S, the function f defined by

∀x, y ∈ S f (x, y) = inf{d (x, y) , 1}

is a distance, equivalent to d.
(d) Let d and d’ be two distances on S. Show that if there exist two constant C and D

in R+ \ {0} such that

∀x, y ∈ S C d (x, y) � d’ (x, y) � D d (x, y)

then d and d’ are equivalent. Is this condition necessary for d and d’ be equivalent?

Let K be a semiring. For s and t in K〈〈A∗〉〉, let e(s, t) be the gap between s and t, defined
as the minimal length of words on which s and t are different:

e(s, t) = min {n ∈ N | ∃w ∈ A∗, |w| = n and 〈s, w〉 �= 〈t, w〉} .

The gap is a generalisation of the notion of valuation of a series. The valuation v(s) of s

in K〈〈A∗〉〉 is defined by:

v(s) = e(s, 0) = min {|w| | 〈s, w〉 �= 0} = min {|w| | w ∈ supp s} .

Conversely, and if K is a ring, e(s, t) = v(s − t) .

Work in Progress – 32 – 21 January 2019

Lecture notes Weighted Automata and Transducers

(e) Show that the map defined by

∀s, t ∈ K〈〈A∗〉〉 d’ (s, t) = 2− e(s,t) (4.1)

is an ultrametric distance on K〈〈A∗〉〉, bounded by 1.

(f) Let c be a distance on K〈〈A∗〉〉, bounded by 1. Show that the map defined by

∀s, t ∈ K〈〈A∗〉〉 d (s, t) = 1
2

∑
n∈N

(
1
2n

max {c (〈s, w〉, 〈t, w〉) | |w| = n}
)

(4.2)
is a distance on K〈〈A∗〉〉, bounded by 1.

(g) Show that, whatever the distance c, d (s, t) � d’ (s, t) holds.

(h) Show that if c is the discrete distance, then d’ (s, t) � 2 d (s, t) holds, hence that (4.1)
and (4.2) define two equivalent distances on K〈〈A∗〉〉 if K is equipped with the discrete
distance.

(i) Show that the topology defined by d on K〈〈A∗〉〉 is the topology of the simple conver-
gence.

(j) Show that if K is a topological semiring, then so are KQ×Q (Q finite) and K〈〈A∗〉〉.
(k) Let

(
sn

)
n∈N

and
(
tn

)
n∈N

be two sequences of series in the topological semiring K〈〈A∗〉〉.
Verify that

(
sn + tn

)
n∈N

or
(
sn tn

)
n∈N

may be convergent sequences, without
(
sn

)
n∈N

or
(
tn

)
n∈N

being convergent sequences.

Not to be circulated – 33 – 21 January 2019

Lecture II

Morphisms of weighted automata
Conjugacy and minimal quotient

In this lecture, we address the problem of finding, given a K-automaton A, a K-
automaton B, hopefully of smaller dimension than A, and that inherits the structure
of A, that is, such that there is a correspondence between the computations of A
and those of B. This amounts to describing the morphisms of K-automata, that is,
the mappings between K-automata that preserve their structure.

Contents
1 Morphisms of Boolean automata 36

1.1 The case of (complete) deterministic automata 36
1.2 The case of general (Boolean) automata 37
1.3 Local properties of morphisms 39
1.4 The Schützenberger covering 42

2 Morphisms of weighted automata 44
2.1 Conjugacy . 45
2.2 Out-morphisms, In-morphisms 46
2.3 Minimal quotient . 48

3 Exercises . 50

The classical notion of the minimal automaton of a language, minimal quotient
of any determistic that accepts the language is at the same time an example of what
we want to generalise and somewhat misleading. Already when it deals with non-
deterministic (Boolean) automata, this generalisation requires a lateralisation which
is not usually associated with the notion morphism and this may may explain it has
been given the other name of bisimulation in the literature. We call it Out-morphism
to stress the link with the notion of morphism.

We define Out-morphism in a naive way for non-deterministic Boolean auto-
mata and by means of the mathematical notion of conjugacy for the general case
of weighted automata. This notion being set up, the same theory as the classical

35

2.16 – Finite automata based computation models MPRI 2018/2019

one for complete deterministic automata can be rolled out and it is easily seen that
every weighted automaton admits a minimal quotient as the image of the coarsest
Out-morphism which is computed essentially by the same algorithm.

It is worth to be noted that, at least in the case of Boolean automata, the
converse operation is indeed at least as interesting: given A, build B of which A is
a morphic image, hence larger than A, but whose computations are less entangled,
in such a way that it becomes possible, by means of other operations, to distinguish
and make choices between these computations. Such constructions are essentially
considered (even for general weighted automata) when the computations of B are in
a 1-to-1 corespondence with those of A, that is, when B is a covering of A.

1 Morphisms of Boolean automata

This section is more than a reminder or an appetizer. It introduces at the end the
notions of local properties of morphisms, that will be instrumental in the study of
transducers.

In this section, all automata are Boolean automata. We begin with the present-
ation of the classical definition and computation of the minimal automaton of a
rational language while insisting on the morphism point of view.

1.1 The case of (complete) deterministic automata

A deterministic automaton is denoted by A = 〈 A, Q, i, δ, T 〉 rather than by A =
〈 A, Q, I, E, T 〉 , where δ is the transition function, that is, a map δ : Q×A → Q .
For every w in A∗ and p in Q, we write p · w = q rather than δ(p, w) = q . Since
(p · u) · v = p · uv the transition function δ defines an action of A∗ over Q.

The minimal automaton of a language L of A∗ is defined by means of the quotient
operation that anticipate the notion of quotient of a series (cf. Definition III.13):
if u is in A∗, the (left) quotient of L by u is the language u−1L = {v ∈ A∗ | uv ∈ L} .
Let RL be the set of quotients of L: RL =

{
u−1L

∣∣ u ∈ A∗} ; RL is finite if and
only if L is a rational language.

Since (uv)−1L = v−1(u−1L) , the (left) quotient is a (right) action of A∗ over
the set of languages P (A∗), which in turn defines a deterministic automaton on any
set of languages closed by quotient.

For every rational language L, let us denote by AL the finite deterministic auto-
maton AL = 〈 A, RL, {L},�, TL 〉 , where � is another notation for the quotient:

L � u = u−1L and TL =
{

u−1L
∣∣∣ 1A∗ ∈ u−1L

}
.

The automaton AL accepts L and is called the minimal automaton of L, a termin-
ology that is justified by the following.

Work in Progress – 36 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Let A = 〈 A, Q, i, δ, T 〉 be a complete deterministic accessible automaton and
L = L(A) the language that it accepts. For all p in Q, we write Lp for the language
accepted by the automaton obtained from A by replacing the initial state i by p:

Lp = L(〈 A, Q, p, δ, T 〉) = {w ∈ A∗ | p · w ∈ T } .

Definition 1. The Nerode equivalence is the relation ν defined on Q by

p ≡ q mod ν ⇐⇒ Lp = Lq .

Proposition 2. The Nerode equivalence induces a map ϕ : Q → Q/ν which satur-
ates T and such that ϕ(p · a) = (ϕ(p)) · a .

Proposition 2 allows to define a quotient automaton A/ν = 〈 A, Q/ν, [i]ν , δν , Tν 〉.

Theorem 3. AL = A/ν .

Theorem 3 tells at the same time that AL is the quotient of every complete
deterministic automaton that accepts L and that it is the complete deterministic
automaton that accepts L with the minimal number of states.

Example 4. Figure 1 shows a complete deterministic automaton and its minimal
quotient, obtained by merging states.

a b
a

b

b a b a

a b

b a a b

Figure 1: A complete deterministic automaton and its minimal quotient

Proposition 5. The Nerode equivalence of a finite deterministic automaton is ef-
fectively computable by a partition refinement algorithm.

1.2 The case of general (Boolean) automata

The first definition of morphism for (Boolean) automata follows naturally from the
one for deterministic ones. It appears however that it has to be strengthened in order
to give rise to the notion of minimal quotient. This new definition of Out-morphism,
similar to the one of simulation for transition systems, applies to any Boolean auto-
maton but is lateralised (or directed). It is described more systematically in the next
subsection.

For the rest of this section, the alphabet is A and fixed, and A = 〈 Q, I, E, T 〉
and B = 〈 R, J, F, U 〉 are two Boolean automata.

Not to be circulated – 37 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Definition 6. A map ϕ : Q → R is a morphism (of automata) if:
(i) ϕ(I) ⊆ J ,
(ii) ϕ(T) ⊆ U , and
(iii) for every transition (p, a, q) in E, (ϕ(p), a, ϕ(q)) is a transition in F .

If ϕ is such a morphism, we write ϕ : A → B .

Proposition 7. If ϕ : A → B is a morphism, then A ⊆ B .

The notion of morphism is somewhat weak as shown by the next example.

Example 8. (i) If U is the one-state automaton which accepts the whole A∗,
then the map which sends all states of any automaton A on the unique state of U
is a morphism.

(ii) If C = A × B , then both projections πA : C → A and πB : C → B are
morphisms.

The reason for the inclusion in Proposition 7 be strict is that not every (suc-
cessful) computation in B may be lifted into a (successful) computation in A: the
morphism ϕ is said not to be conformal. The two sorts of morphisms in Example 8
are not conformal. Figure 2 gives another example of a non-conformal morphism.
It shows that the inclusion in Proposition 7 may be strict, even when ϕ induces a
bijection between the transitions — which is the strongest possible condition besides
being the identity.

a

a

a

b

b b

b

b

b

a

a

a

Figure 2: A non-conformal morphism (the morphism is the horizontal projection)

Example 8(i) shows how weak the notion of automaton morphism can be. In
order to have morphisms which really preserve the structure of automata (which is
supposed to be the role of morphisms) we consider morphisms which meet additional
conditions. We first do it ‘directly’; in the next subsection, we introduce the more
general notion of local properties of morphisms that allows to define a richer variety
of morphisms.

Definition 9. A map ϕ : Q → R is an Out-morphism if:
(o) ϕ(Q) = R , that is, if ϕ is surjective,
(i) ϕ(I) = J ,
(ii) T = ϕ−1(U) ,
(iii) for every transition (p, a, q) in E, (ϕ(p), a, ϕ(q)) is a transition in F ,
(iv) for every transition (r, a, s) in F and every p in ϕ−1(r), there exists a q

in ϕ−1(s) such that (p, a, q) is a transition in E.

Work in Progress – 38 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Remark 10. The notion of Out-morphism is directed since condition (iv), which
consists in a succession of two quantifiers: ‘for all..., there exists...’, breaks the
symmetry between the origin and the destination of the transitions.

Examples 11. (i) If B is complete and with every state being final,
then πA : A × B → A is an Out-morphism.

(ii) A morphism from a complete deterministic automaton onto an accessible
deterministic automaton is an Out-morphism.

Definition 12.
An automaton B is a quotient of A if there exists an Out-morphism ϕ : A → B .

Remark 13. The terminology does not make it so clear, but the notion of quotient
is directed as it derives from the one of Out-morphism. It means somehow that the
true morphisms are the Out-morphisms.

Proposition 14. If B is a quotient of A, then every (successful) computation B can
be lifted into a (successful) computation A.

Corollary 15. If B is a quotient of A, then A = B .

These two statements show that we have reached our goal with the notion of Out-
morphism. In order to avoid repetition, we postpone to after the definition of local
properties of morphisms and a new expression of Out-morphisms, the presentation
of results attached to the notion of quotient.

1.3 Local properties of morphisms

We now take more precise definitions for characterising morphisms; we first set up
a convention that reduces the notion of automaton morphism to that of a labelled
graph morphism (and get rid of conditions (i) and (ii) in Definitions 6 and 9).

1.3.1 Subliminal states

With every automaton A = 〈 Q, I, E, T 〉 , we associate, by a sort of normalisation,
an automaton An to which we have added two new states — iA , an initial state,
and tA , a final state — and some transitions, labelled with 1A∗ , which go from iA
to each initial state of A and from each final state of A to tA :

An = 〈 Q ∪ {iA, tA}, iA, En, tA 〉 ,
En = E ∪ {(iA, 1A∗ , i) | i ∈ I} ∪ {(t, 1A∗ , tA) | t ∈ T } .

These two new states, iA and tA, are called the (initial and final) subliminal states
of A. We verify easily that An is equivalent to A. More precisely, there is a bijection
between the computations of An and those of A and, of course, the computations
that correspond in this bijection have the same label.

Not to be circulated – 39 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Remark 16. Even though we deal here with Boolean automata only, the definition
of An may seem to imply a drastic change in the model of (finite) automata since it
allows the empty word to be the label of a transition, transitions that are then called
spontaneous transitions (or ε-transitions). In full generality, this feature opens the
possibility for a word to be the label of an infinite number of computations and
raises the (difficult) problem of the validity when it comes to weighted automata, a
problem which will not be treated in these notes. However, if there is no circuit of
spontaneous transitions in the automaton, then every word is still the label of a finite
number of computations, its weight can be computed by the sum in Equation (I.1.1)
and the behaviour of the automaton is well-defined. Clearly, the construction of An
fall in this case where no circuit of spontaneous transitions is created.

If ϕ is a map from A to B, we extend it to a map ϕn from An to Bn by taking
ϕn(iA) = iB and ϕn(tA) = tB . We then verify, just as easily, that ϕ : A → B is an
automaton morphism if and only if ϕn : An → Bn is a labelled graph morphism.

1.3.2 Outgoing and incoming bouquets

For every state p of A = 〈 Q, I, E, T 〉 , we denote by OutA(p) the set of transitions
in A outgoing from p and by InA(p) the set of transitions arriving at p:

OutA(p) =
{
e ∈ E

∣∣ e =
(
p, a, q

)}
, InA(p) =

{
e ∈ E

∣∣ e =
(
q, a, p

)}
,

and we call these sets the outgoing bouquet and the incoming bouquet at state p

respectively (the automaton A being understood). These notions are directed, of
course, and dual, that is, InA(p) = Out tA (p) for every p in Q (with the slight abuse
which consists in considering that A and tA have the same set of transitions). The
purpose of the definition of these bouquets is the description of morphism properties
based on the remark that if ϕ : A → B is a morphism, then, for every p in Q,
ϕ maps OutA(p) into OutB(ϕ(p)) and InA(p) into InB(ϕ(p)) .

Definition 17. A morphism ϕ : A → B is Out-surjective (resp. Out-injective,
Out-bijective) if, for every state p of An, the restriction of ϕ to OutA(p) is a sur-
jective (resp. injective, bijective) map into OutB(ϕ(p)).

The morphism ϕ is In-surjective (resp. In-injective, In-bijective) if, for every
state p of An, the restriction of ϕ to InA(p) is a surjective (resp. injective, bijective)
map into InB(ϕ(p)).

The ‘Out-properties’ and the corresponding ‘In-properties’ are dual properties,
that is, if ϕ : A → B is Out-surjective (resp. Out-injective, Out-bijective) then
ϕ : tA → tB is In-surjective (resp. In-injective, In-bijective).

Remark 18. Condition(iv) of Definition 9 is another way to express that the morph-
ism ϕ is Out-surjective.

Work in Progress – 40 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Remark 19. The conditions of Definition 17 on the outgoing bouquets of the sub-
liminal initial states imply that if ϕ : A → B is Out-surjective, then ϕ(I) = J

(condition(i) of Definition 9). Considering the outgoing bouquets of the terminal
states — and the transitions toward subliminal final states imply that if ϕ is Out-
surjective, then T = ϕ−1(U) (condition(ii) of Definition 9). Similarly, if ϕ is
Out-injective, then, for every j in J , there exists at most one i in I such that
ϕ(i) = j .

In a dual way, if ϕ : A → B is In-surjective, then ϕ(T) = U and I = ϕ−1(J)
and if ϕ is In-injective, then for every u in U there exists at most one t in T such
that ϕ(t) = u .

Out-surjective morphisms are conformal, as expressed by the following statement
which is easily verified by induction on the length of paths.

Proposition 20. Let ϕ : A → B be an Out-surjective morphism. For every path d

in B whose source s is in the image of ϕ and for every p such that ϕ(p) = s there
exists at least one path c in A whose source is p and such that ϕ(c) = d.

Corollary 21. If ϕ : A → B is an Out-surjective morphism, then A = B .

Corollary 22. If ϕ : A → B is an Out-bijective morphism, then ϕ is a bijection
between the successful computations of A and those of B.

Corollary 23. If ϕ : A → B is an Out-surjective morphism and if B is accessible
then ϕ is (globally) surjective.

1.3.3 Out- and In-morphisms revisited

With Corollary 23, we see that Out-surjective morphisms are ‘almost always’ sur-
jective (condition(o) of Definition 9). For simplification and conciseness, and in
order to avoid special cases, we take that latter property as an hypothesis and set
up the following definitions.

Definition 24. A surjective Out-surjective morphism is called an Out-morphism.
A surjective In-surjective morphism is called an In-morphism.
A surjective Out-bijective morphism is called a covering.1

A surjective In-bijective morphism is called a co-covering.2

A surjective Out-injective morphism is called an immersion.
A surjective In-injective morphism is called a co-immersion.

Remarks 18 and 19 show that Definition 9 and the definition above coincide (for
Out-morphisms). We then repeat Definition 12 and Proposition 14.

1In French, revêtement.
2In French, co-revêtement.

Not to be circulated – 41 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Definition 25.
An automaton B is a quotient of A if there exists an Out-morphism ϕ : A → B .
An automaton B is a co-quotient of A if there exists an In-morphism ϕ : A → B .

The automaton B is a co-quotient of A if tB is a quotient of tA.

Proposition 26. If B is a quotient (resp. a co-quotient) of A, then every (success-
ful) computation B can be lifted onto a (successful) computation A.

Remark 27. Proposition 26 implies that if B is a quotient of A, then A is a sim-
ulation of B. The terminology of simulation is very common in several areas close
to automata theory but using a different vocabulary (transition systems, coalgebra,
etc.). Note that the converse statement (if A is a simulation of B, then B is a
quotient of A) does not hold. See Proposition 31 below.

The notion of quotient allows to extend the one of minimal automata.

Proposition 28. Every automaton A has a minimal quotient C, which is unique
up to an isomorphism, and which is the quotient of any quotient B of A.

Remark 29. The minimal quotient of an automaton is not canonically attached to
the accepted language anymore but depends on the automaton it is computed from.

The dual of Proposition 28 also holds.

Proposition 30. Every automaton A has a minimal co-quotient D, which is unique
up to an isomorphism, and which is the co-quotient of any co-quotient B of A.

The minimal quotient or co-quotient of an automaton can be computed by a kind
of Moore algorithm that consists in successive refinements of the trivial partition on
the set of states. We come back to this question at Section 2.3 in the more genral
setting of weighted automata.

Finally, let us note that the notion of quotient allows to give a clean definition of
bisimulation. (We give it as a statement, assuming that the definition of bisimilarity
has been elsewhere.)

Proposition 31. Two automata A and B are bisimilar if and only if they have the
same (or isomorphic) minimal quotient.

1.4 The Schützenberger covering

We begin with an elementary statement.

Proposition 32. Let A be an accessible automaton, B a complete deterministic
automaton equivalent to A, and E the accessible part of B × A . Then πA, the
projection of B×A onto A, is a covering from E to A.

Work in Progress – 42 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Definition 33. Let A be an accessible automaton and Â its determinisation. The
Schützenberger covering, or S-covering, of A is the accessible part S of Â×A .

Theorem 34. Let A be an accessible automaton and S its Schützenberger covering.
Then S satisfies:

(i) πA is a covering from S to A;
(ii) πÂ is an In-morphism from S to Â .

Example 35. Figure 3 shows the S-covering of the automaton A1,

p

q

r

a

b

a b

a b

{p} {p, q} {p, r} {p, q, r}a b
a

b

b

a

b

a

a

a

b

a

b

a
a

b

a

a

b

b

b

b a b

b

a

a

Figure 3: The S-covering of A1

Proof of Theorem 34. Since Â is a complete deterministic automaton equivalent
to A, condition (i) is the instance of Proposition 32 for B = Â and it remains to
prove condition (ii). From the definition of transitions in Â = 〈P (Q), {I}, F, U 〉 ,
namely,

P
a−−→
Â

S ⇐⇒ S =
{

q

∣∣∣∣ ∃p ∈ P p
a−−→
A

q

}
, (1.1)

we first deduce:

Property 36. The states of S are the pairs (P, p) where P is a state of Â and p is
in P .

Proof. Let P be a state of Â: that is, there exists w in A∗ such that

P =
{

p

∣∣∣∣ ∃i ∈ I i
w−−→
A

p

}
.

Thus (P, p) is a state of S; that is, it is accessible in Â×A for all p in P . Conversely,
if (P, q) is a state of S, there exists w in A∗ and i in I such that both {I} w−−→

Â
P

and i
w−−→
A

q , and hence q is in P .

Not to be circulated – 43 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

We next deduce by (1.1) that

∀P, S ⊆ Q , ∀q ∈ S , ∀a ∈ A P
a−−→
Â

S =⇒ ∃p ∈ P p
a−−→
A

q

=⇒ ∃p ∈ P (P, p) a−−→
Â×A

(S, q)

since (P, p) is a state of S, which indeed means that πÂ : S → Â is an In-surjective
labelled graph morphism.

If P ⊆ Q is final in Â there exists at least one t in P which is final in A, hence
a state (P, t) which is final in S. On the other hand, I is the unique initial state
of Â, every i in I is initial in A, hence every state (I, i) is initial in S. Altogether,
πÂ is an In-surjective morphism.

Corollary 37. For every Boolean automaton A, there exists an automaton T such
that:

(i) T is equivalent to A;
(ii) T is unambiguous;
(iii) there exists a morphism ϕ : T → A .

Proof. Let S be the Schützenberger covering of A and πÂ : S → Â the projection
of S on Â. Since πÂ is In-surjective, it is possible, by deleting some transitions
in S, to obtain a sub-automaton T of S such that πÂ : T → Â be In-bijective. The
projection πÂ yields a bijection between the successful computations of Â and those
of T , hence T is equivalent to Â and then to A and T is unambiguous since so is Â.
The restriction to T of the projection πA is a morphism.

It is not a new result that given an automaton A, it is possible to find an
unambiguous automaton T equivalent to A: the determinisation of A for instance
answers the question. That T can be chosen in a way there is a morphism from T
to A, that is, one can see in A the computations of T is a new, and far reaching,
property.

2 Morphisms of weighted automata

After the definition of any structure one looks for morphisms between objects of that
structure, and weighted automata are no exception. Moreover, morphisms of graphs,
and therefore of classical Boolean automata, are not less classical, and one waits for
their generalisation to weighted automata. Taking into account multiplicity proves
however to be not so simple. In the sequel, all automata are supposed to be of finite
dimension.3

3May be it should have been mentioned that the matter developed in Section 1 did not require
the automata be finite.

Work in Progress – 44 – 21 January 2019

Lecture notes Weighted Automata and Transducers

We choose to describe the morphisms of weighted automata via the notion of
conjugacy, borrowed from the theory of symbolic dynamical systems.

2.1 Conjugacy

Definition 38. A K-automaton A = 〈 I, E, T 〉 is conjugate to a K-automaton
B = 〈 J, F, U 〉 if there exists a matrix X with entries in K such that

I X = J, E X = X F, and T = X U.

The matrix X is the transfer matrix of the conjugacy and we write A X=⇒ B .

If A is conjugate to B, then, for every n, the series of equalities holds:

I En T = I En X U = I En−1 X F U = . . . = I X F n U = J F n U ,

from which the following is directly deduced.

Proposition 39. If A is conjugate to B , then A and B are equivalent.

Example 40. It is easily checked that the Z-automaton Y1 of Figure 4 is conjugate
to the Z-automaton Z1 of the same figure with the transfer matrix X1:

X1 =


1 0 0 0
0 −1 1 0
0 1 1 0
0 0 0 1

 .

a

−2a

b

2bY1

−a

b

−a

b

a
b

a
b Z1

Figure 4: Two conjugate Z-automata

In spite of the idea conveyed by the terminology, the conjugacy relation is not
an equivalence but a preorder relation. Suppose that A X=⇒ C holds; if C Y=⇒ B
then A XY=⇒ B , but if B Y=⇒ C then A is not necessarily conjugate to B, and we
write A X=⇒ C Y⇐= B or even A X=⇒ Y⇐= B . This being well understood, we shall
speak of “conjugate automata” when the direction does not matter.

If A = 〈 I, E, T 〉 is conjugate to B = 〈 J, F, U 〉 then the same conjugacy
relation holds between the matrices of the corresponding representations, that is, if
A = (I, µ, T) and B = (J, κ, U) , then, as above, I X = J , T = X U , and

∀a ∈ A µ(a) X = X κ(a) . (2.1)

Then, the same conjugacy relation holds for the representations of every word,
that is:

∀w ∈ A∗ µ(w)X = X κ(w) . (2.2)

Not to be circulated – 45 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

2.2 Out-morphisms, In-morphisms

Let ϕ : Q → R be a surjective map and Xϕ the Q×R-matrix where the (q, r)-th
entry is 1 if ϕ(q) = r, and 0 otherwise. Since ϕ is a map, every row of Xϕ contains
exactly one 1 and since ϕ is surjective, every column of Xϕ contains at least one 1.
Such a matrix is called an amalgamation matrix in the setting of symbolic dynamics.

Definition 41. Let A and B be two K-automata of dimension Q and R respectively.
We say that a surjective map ϕ : Q → R is an Out-morphism (from A onto B) if A
is conjugate to B by Xϕ, that is, if A Xϕ=⇒ B , and we write ϕ : A → B .

We also say that B is a quotient of A, if there exists an Out-morphism ϕ : A → B .

Remark 42. If K = B, then Definition 41 coincide with Definition 9.

Again, the notions of Out-morphism and quotient are lateralised, or directed,
since the conjugacy relation is not symmetric. Stated otherwise, and as we see with
Proposition 47, it is directed in that it refers not to the transitions of the automaton
but to the outgoing transitions from the states of the automaton. We then define
the dual notions of In-morphism and co-quotient.

Definition 43. With the notation above, a surjective map ϕ : Q → R is an In-
morphism (from A onto B) if B is conjugate to A by tXϕ, that is, if B

tXϕ=⇒ A , and
we write again ϕ : A → B .

We say that B is a co-quotient of A, if there exists an In-morphism ϕ : A → B .

Example 44. Let C2 be the N-automaton of Figure I.3 and ϕ2 the map from
{j, r, s, u} to {i, q, t} such that jϕ2 = i , uϕ2 = t and rϕ2 = sϕ2 = q , then

Xϕ2 =


1 0 0
0 1 0
0 1 0
0 0 1


and ϕ2 is an Out-morphism from C2 onto V2 and an In-morphism from C2 onto V ′

2.

In contrast with this special example, a map ϕ : Q → R is not usually both
an Out- and an In-morphism. When necessary we shall write ϕ : A Out→ B and
ϕ : A In→ B in order to specify, or to distinguish between, the case.

It directly follows from Definitions 41 and 43 that if ϕ : A Out→ B and ψ : A In→ C
are an Out- and an In-morphism respectively, then

C
tXψ=⇒ A Xϕ=⇒ B hence C

tXψXϕ=⇒ B . (2.3)

For instance, it holds:

V ′
2

1 0 0
0 2 0
0 0 1


=⇒ V2 .

Work in Progress – 46 – 21 January 2019

Lecture notes Weighted Automata and Transducers

j r

s u

C2

b

a

b

2a

2b

2b2a

2b

4a

4b

b 2b

b

i q tV2
2b 2b

b

a + b 2a + 2b 4a + 4b

i q t V ′
2

b 4b

b

a + b 2a + 2b 4a + 4b

Figure 5: V2 is a quotient and V ′
2 a co-quotient of C2

The problem of establishing a converse to the implication expressed in (2.3), that is,
proving that if two automata B and C are conjugate then there exists an automaton A
such that B is a quotient of A and C a co-quotient of A is out of the scope of these
lecture notes (the answer is indeed somewhat more complex). But we can at lest
state the following.

Theorem 45. Let K = B or N. If A and B are equivalent K-automata, then there
exists a K-automaton C such that A is a quotient of C and B a co-quotient of C.

For instance, if A is a Boolean automaton and B = Â, the Schützenberger
covering is the automaton C the existence of which is insured by the theorem.

Remark 46. The entries of the amalgamation matrix Xϕ are 0K or 1K, hence belong
to the center of K and from (2.1) follows that if ϕ is an In-morphism from A to B
it holds

∀a ∈ A κ(a) tXϕ = tXϕ µ(a) and then tµ(a) Xϕ = Xϕ
tκ(a) ,

which means that in the case where we could speak of the transpose of an automaton,
hence essentially when K is commutative, ϕ is an In-morphism from A to B if ϕ is
an Out-morphism from tA to tB. This statement makes appear more clearly that
In-morphism is the dual notion of Out-morphism. Our definition has the advantage
that it does not depend on the one of the transpose of an automaton.

It is to be noted that in the definition of an Out-morphism ϕ : A → B , the
image is immaterial and only counts the map equivalence of ϕ — which is sufficient
to determine the matrix Xϕ. From any amalgamation matrix Xϕ, we construct a
matrix Yϕ by transposing Xϕ and by cancelling certain of its entries in such a way
that Yϕ is row monomial (with exactly one 1 per row); Yϕ is not uniquely determined
by ϕ but also depends on the choice of a ‘representative’ in each class for the map
equivalence of ϕ. Whatever this choice, the product Yϕ · Xϕ is the identity matrix

Not to be circulated – 47 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

of dimension R (as the matrix representing ϕ ◦ ϕ−1). Easy matrix computations
establish the following.

Proposition 47. Let A = 〈 I, E, T 〉 be a K-automaton of dimension Q. An equi-
valence ϕ on Q is an Out-morphism if and only if E and T satisfy the two equations

Xϕ · Yϕ · E · Xϕ = E · Xϕ , (2.4)
and Xϕ · Yϕ · T = T . (2.5)

In this case, the K-automaton B = 〈 J, F, U 〉 defined by the following equations

F = Yϕ · E · Xϕ , J = I · Xϕ and U = Yϕ · T (2.6)

is the quotient of A by ϕ.

Equations 2.4 and 2.5 can be read in the following way: an equivalence ϕ on Q

is an Out-morphism (understood, of A) if for any two states p and p′ equivalent
modulo ϕ the sum of the labels of the transitions that go from p to all the states of
a whole class modulo ϕ is equal to the sum of the labels of the transitions that go
from p′ to the same states and if any two entries of T indexed by equivalent states
modulo ϕ are equal, that is (we denote by [q]ϕ the class of q modulo ϕ):

∀p, p′, q ∈ Q p ≡ p′ mod ϕ =⇒


(i)

∑
r∈[q]ϕ

Ep,r =
∑

s∈[q]ϕ
Ep′,s

(ii) Tp = Tp′

(2.7)
Remark 48. It is easy to chek that Definitions 12 and 17 coincide if K = B.

2.3 Minimal quotient

Theorem 49. Let A be a K-automaton of finite dimension. Among all quotients
of A (resp. among all co-quotients of A), there exists one quotient (resp. one co-
quotient), unique up to isomorphism and effectively computable from A, which has a
minimal number of states and which is a quotient (resp. a co-quotient) of all these
K-automata.

Proof. A surjective map ϕ : Q → R defines an Out-morphism ϕ : A → B if and
only if Equations (2.4) and (2.5) (which do not involve B) are satisfied.

To prove the existence of a minimal quotient, it suffices to show that if ϕ : Q → R

and ψ : Q → P are two maps that define Out-morphisms, the map ω : Q → S also
defines an Out-morphism, where ω = ϕ ∨ ψ is the map whose map equivalence is
the upper bound of those of ϕ and ψ; that is, the finest equivalence which is coarser
than the map equivalences of ϕ and ψ. In other words, there exist ϕ′ : R → S

and ψ′ : P → S such that ω = ϕϕ′ = ψψ′ and each class modulo ω = ϕ ∨ ψ can

Work in Progress – 48 – 21 January 2019

Lecture notes Weighted Automata and Transducers

be seen at the same time as a union of classes modulo ϕ and as a union of classes
modulo ψ. It follows that

E · Xω = E · Xϕ · Xϕ′ = E · Xψ · Xψ′ (2.8)

and if two states p and r of Q are congruent modulo ω, there exists q such that
ϕ(p) = ϕ(q) and ψ(q) = ψ(r) (in fact a sequence of states qi etc.). The rows p

and q of E · Xϕ are equal, and the rows q and r of E · Xψ are equal, hence, by (2.8),
the rows p and r of E · Xω are too.

To compute this minimal quotient we can proceed by successive refinements of
partitions, exactly as for the computation of the minimal automaton of a language
from a deterministic automaton which recognises the language.

In what follows the maps ϕi are identified with their map equivalences; the
image is irrelevant. A state r of Q is identified with the row vector of dimension Q,
characteristic of r and treated as such. For example, ϕ(r) = ϕ(s) can be written
r · Xϕ = s · Xϕ .

The map ϕ0 has the same map equivalence as T ; that is,

r · Xϕ0 = s · Xϕ0 ⇔ r · T = s · T ,

which can also be written
Xϕ0 · Yϕ0 · T = T , (2.9)

and the same equation holds for every map finer than ϕ0. For each i, ϕi+1 is finer
than ϕi and, by definition, r and s are joint in ϕi (that is, r · Xϕi = s · Xϕi) and
disjoint in ϕi+1 if r · E · Xϕi �= s · E · Xϕi . Let j be the index such that ϕj+1 = ϕj ,
that is, such that

r · Xϕj = s · Xϕj =⇒ r · E · Xϕj = s · E · Xϕj , (2.10)

which can be rewritten

Xϕj · Yϕj · E · Xϕj = E · Xϕj . (2.11)

By (2.9) and (2.11), ϕj is an Out-morphism.
Conversely, every Out-morphism ψ satisfies (2.5) and is hence finer than ϕ0.

Then, for all i, if ψ is finer than ϕi it must also be finer than ϕi+1. In fact, if r

and s are joint in ψ, it follows that r · Xψ = s · Xψ and hence also r · Xϕi = s · Xϕi

since ϕi is coarser than ψ, and hence r and s are joint in ϕi+1: ψ is finer than ϕj

which is thus the coarsest Out-morphism.

Remark 50. After establishing that the minimal quotient of a K-automaton and
the minimal automaton of a language are computed by the same algorithm, let us
repeat what we already stated in Remark 29: the latter automaton is canonically
associated with the language, whereas the former is associated with the K-automaton
we started from, and not with its behaviour.

Not to be circulated – 49 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

3 Exercises

1. Compute the (minimal) quotient of the following B-automaton:

b

a

a

a

b

a

b

a

a

b

a

2. Let D1 be the B-automaton below. Compute the (minimal) quotient of D1, the co-quotient
of D1, the co-quotient of the quotient of D1, etc.

a

a a

a

a

a

a

3. Calculate all the quotients and all the co-quotients of the N-automaton:

a

a

4. <Coloured Transition Lemma. Establish the following statement:

Let A be a (Boolean) automaton on a monoid M the transitions of which are coloured in
red or in blue. Then, the set of labels of computations of A that contain at least one red
transition is a rational set (of M).

5. Show that any Z-rational series is the difference of two N-rational series.

6. Construct the Schützenberger covering S of the following B-automaton A.

a + b

aa b
b

How many S-immersions are there in this covering (that is, how many sub-automata T of S
that are unambiguous and equivalent to A)?

7. Compute the Schützenberger covering of the B-automaton B1 of the Figure 6.

8. Quotients and product of automata. Let A, B and C be three K-automata on A∗.
Show that if B is a quotient of A, then B⊗C is a quotient of A⊗C.

Work in Progress – 50 – 21 January 2019

Lecture notes Weighted Automata and Transducers

a

b

a

b

a bb a

a b

Figure 6: The automaton B1

9. Quotients and co-quotients of the Cn.

The N-automaton C1 over {a, b}∗ shown at Figure 7 (a) associates with every word w the
integer w the binary representation of which is w when a is replaced by the digit 0 and b

by 1.

Let C2 be the tensorial square of C1: C2 = C1⊗C1 ; V2, shown at Figure 7 (b), is the minimal
quotient of C2 and V ′

2, shown at Figure 7 (c), is the minimal co-quotient of C2.

(a) Compute the minimal quotient V3 and the minimal co-quotient V ′
3 of C3 = C2⊗C1 .

(b) Compute the minimal co-quotient V ′
4 of C4 = C3⊗C1 . Compare with V ′

3.

(c) Generalising the above computation, compute the minimal co-quotient V ′
n+1 of

Cn+1 = Cn⊗C1 , for every n.

b

a + b 2a + 2b

(a) C1

2b 2b

b

a + b 2a + 2b 4a + 4b

(b) V2

b 4b

b

a + b 2a + 2b 4a + 4b

(c) V ′
2

Figure 7: Three N-automata

10. Conjugacy of an automaton and its determinisation.

(a) Let A1 be the (Boolean) automaton of Figure 8 and Â1 its determinisation. Verify
that Â1

X1=⇒ A1 holds, with

X1 =


1 0 0
1 1 0
1 0 1
1 1 1

 .

(b) Generalisation. Let A be a (Boolean) automaton and Â its determinisation. Show
that there exists an Boolean matrix X such that Â X=⇒ A .

a b

a

b

a

b

Figure 8: L’automate A1

Not to be circulated – 51 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

11. Automata with bounded ambiguity and the Schützenberger covering. In the
sequel, A is a Boolean automaton, Â its determinisation, and S its Schützenberger covering.

Definition 51. We call concurrent transition set of S a set of transitions which

(i) have the same destination (final extremity),

(ii) are mapped onto the same transition of Â.

Two transitions of S are called concurrent if they belong to the same concurrent trans-
ition set.

We also set the folllowing definition:

Definition 52. An automaton A over A∗ is of bounded ambiguity if there exists an integer k

such that every word w in A is the label of at most k distinct computations. The smallest
such k is the ambiguity degree of A.

(a) What can be said of an automaton whose Schützenberger covering contains no con-
current transitions?

(b) Show that there exists a computation in S which contains two transitions of the same
concurrent transition set if and only if there exists a concurrrent transition which
belongs to a circuit.

(c) Let p
a−−→ s and q

a−−→ s be two concurrent transitions of S and

c := −→
S

i
x−−→
S

p
a−−→
S

s
y−−→
S

q
a−−→
S

s
z−−→
S

t −→
S

a computation of S where i is an initial state and t a final state. Show that w = xay az

is the label of at least two computations of A.

(d) Prove that an automaton A is of bounded ambiguity if and only if no concurrent
transition of its Schützenberger covering belongs to a circuit.

(e) Check that B1 of Figure 6 is of bounded ambiguity.

(f) Give a bound on the ambiguity degree of an automaton as a function of the cardinals
of the concurrent transition sets of its Schützenberger covering.
Compute that bound in the case of B1.

(g) Infer from the above the complexity of an algorithm which decide if an automaton is
of bounded ambiguity.

Work in Progress – 52 – 21 January 2019

Lecture III

Reduction of weighted automata
Controllability and observability

Given a (finite) K-automaton over A∗, we want to build equivalent ones, hopefully
of smaller dimension. In this lecture, we base this construction upon the behaviour
of the automaton, in contrast with the preceding lecture where we have addressed
the same question by considering the structure of the automaton.

Contents
1 Actions and representations 54

1.1 Action of a monoid on a set 54
1.2 Actions and deterministic automata 56
1.3 Closed sets . 56
1.4 Closed sets and representations 57

2 Control . 59
2.1 The reachability set . 59
2.2 The state-space . 60

3 Observation . 61
3.1 Quotient of series . 61
3.2 The observation morphism 62
3.3 The minimal deterministic automaton 63
3.4 Stability . 64

4 Reduction of representations in a field 65
4.1 Rank of a series . 65
4.2 Reduction of a representation 66
4.3 Effective computations . 68

5 Applications of the reduction of recognisable series . . . 70
5.1 Decidability of the equivalence 70
5.2 From the series to the representation 71

6 Exercises . 72

53

2.16 – Finite automata based computation models MPRI 2018/2019

We first define a process, that we call the universal determinisation process,
and that yields a possibly infinite automaton, but a deterministic one and with no
multiplicity on the transitions but in the final function. We then explain how to
work in that framework.

In the next section, we introduce the notion of quotient of a series, show a
characterisation of recognisable series in terms of quotients, and relate the quotients
with the previous construction.

Finally, we combine the two approaches to set up the theory for reduction in the
case where the multiplicity semiring is a field, or a subsemiring of a field, and turn
the theory into a polynomial algorithm.

As a preliminary, let us recall the main result of Lecture I: finite K-automata
over A∗ and K-representations of A∗ are one and the same thing and we use the most
convenient form; here, the representation. Before all, let us introduce the notion of
action that will be ubiquitous in that lecture.

1 Actions and representations

The notion of action is central in this lecture. We first define it and then describe
how it relates to the one of representation.

Contrary to what we have done in Lecture I (where we have defined K-automata
over free monoids and then extended the notion to K-automata over general (graded)
monoids), we first define actions of arbitrary monoids and then consider in the
following sections actions of free monoids only.

1.1 Action of a monoid on a set

Definition 1. Let S be a set — finite or infinite — and M a monoid. An action δ

of M on S is a map from S ×M to S, denoted by s · m rather than by δ(s, m) ,
which meets the two conditions:

∀s ∈ S s · 1M = s ,

∀s ∈ S , ∀m, m′ ∈ M (s · m) · m′ = s · (mm′) . (1.1)

The orbit of an element s of S under the action δ is the subset of S that can be
reached from s by the actions of all elements of M , that is, the set {s · m | m ∈ M} .

When necessary, we write s ·
δ

m in order to differentiate between two different
actions of a monoid or from the matrix product symbol.

Examples 2. (i) Permutation groups are examples of monoid actions; even
more, one may say that monoid actions are generalisation of permutation groups.

Work in Progress – 54 – 21 January 2019

Lecture notes Weighted Automata and Transducers

(ii) Every monoid M defines an action on itself by multiplication on the right:

∀p, m ∈ M p · m = pm ;

this action is called the right translation or the (right) regular representation of M

over itself. It is denoted (when necessary) by ρ.
(iii) Likewise, every morphism α : M → N defines an action of M on N :

∀n ∈ N , ∀m ∈ M n · m = n (α(m)) . (1.2)

This map satisfies (1.1) because α is a morphism and multiplication in N is asso-
ciative. (The regular representation above corresponds to the identity morphism ι

from M onto itself.1)

Right and left actions The actions we have thus defined are right actions. We
could have defined in a dual manner a left action of M on S as a map from M ×S

to S that satisfies the conditions:

∀s ∈ S 1M · s = s ,

∀s ∈ S , ∀m, m′ ∈ M m′ · (m · s) = (m′ m) · s . (1.3)

Actions on structured sets An action of M on S is a morphism from M into the
monoid of maps from S into itself. If S has a structure (e.g. being a group, a ring,
etc.), we want an action to be a morphism from M into the monoid of endomorpisms
of S. In the sequel, S is a K-module and an action of M on S is ‘linear’:

∀s, t ∈ S , ∀m, m′ ∈ M (s + t) · m = s · m + t · m ,

∀k ∈ K (k s) · m = k (s · m) .

Examples 3. (i) A special case of Example 2(ii) is the regular representation
of A∗ over itself, which extends by linearity to an action of A∗ on the K-module K〈A∗〉,
and which we call the right translation by A∗.

(ii) Any K-representation (or morphism) µ : M → KQ×Q of dimension Q defines
an action of M on the (left) K-module KQ (on K1×Q, indeed), also denoted by µ:

∀x ∈ KQ , ∀m ∈ M x ·
µ

m = x · µ(m) . (1.4)

Since K is not supposed to be commutative, it is important to specify that K1×Q is
a left module.

1But is not denoted as such, as it is misleading to denote by ι a map which is not the identity.

Not to be circulated – 55 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Action morphisms Let R and S be two structures (in the sequel, they will be
K-modules) and suppose that M acts on both R and S, by η and δ respectively.

A morphism α : R → S is an action morphism if

∀r ∈ R , ∀m ∈ M α(r) ·
δ
m = α

(
r ·

η
m

)
,

that is, if the following diagram is commutative (for every m in M).

R R

S S

α α

η

δ

r r ·
η
m

α(r) α
(
r ·

η
m

)
= α(r) ·

δ
m

α α

1.2 Actions and deterministic automata

If we distinguish an element s0 in S, that will play the role of an initial state, and
a subset T of S, that will play the role of the set of final states, any action δ of M

on S defines an automaton Aδ = 〈 M, S, {s0}, δ, T 〉 .
If M is a free monoid A∗, Aδ is a deterministic Boolean automaton. And con-

versely any (complete) deterministic Boolean automaton A over A∗ determines an
action of A∗ on the state set of A. If M is not a free monoid, the notion of actionexercice to be

written is indeed the way to generalise the one of deterministic automaton.
If we replace the subset T by a function T from S to K (the former being a func-

tion from S to B) the action δ, together with s0 and T , now defines a K-automaton,
which we call again deterministic in which the weight of every transition is 1K and
the final function is T . The behaviour of Aδ is then defined by 〈 Aδ , m〉 = T (s0 ·m)
for every m in M .

1.3 Closed sets

In this section, S is a (left) K-module (later, it will be K1×Q or K〈〈A∗〉〉). We first
take some notations that prove to be (very) convenient.

Notations for submodules Any finite subset G of S induces a morphim

αG : KG → S ,

whose image is 〈〈〈G〉〉〉, the sub(-K-)module of S generated by G:

∀x ∈ KG αG(x) =
∑
g∈G

xg g .

We also write
αG(x) = x · G

Work in Progress – 56 – 21 January 2019

Lecture notes Weighted Automata and Transducers

which implicitely means that G is viewed as a column-vector of dimension G of
elements of S.

Conversely, let βG : 〈〈〈G〉〉〉 → KG be a map that performs, for every v in 〈〈〈G〉〉〉, a
choice of a decomposition of v over the elements of G and hence, for every v in 〈〈〈G〉〉〉:

αG(βG(v)) = v . (1.5)

Such a decomposition is not unique in general; that is, when G is not a basis of 〈〈〈G〉〉〉)
and βG(αG(x)) and x are not necessarily equal (but αG(βG(αG(x))) = αG(x)
holds.

It is natural, even though not necessary, to assume that for every g in G, βG(g) Is this alinea useful?

is the vector whose all entries are 0K but the g-th one which is 1K. In other words,
βG(G) is the identity matrix of dimension G.

Definition 4. Let S be a (left) K-module and δ a (right) action of A∗ on S. A
subset G of S is said to be δ-closed if the orbit of G is contained in 〈〈〈G〉〉〉, that is, if

∀g ∈ G , ∀w ∈ A∗ g ·
δ
w ∈ 〈〈〈G〉〉〉 ,

which amounts to say that 〈〈〈G〉〉〉 itself is closed, or stable, under the action of δ:

∀v ∈ 〈〈〈G〉〉〉 , ∀w ∈ A∗ v ·
δ
w ∈ 〈〈〈G〉〉〉 .

If v is in 〈〈〈G〉〉〉, there exists x in KG such that v = αG(x) = x · G and then:

v ·
δ
w = x ·

(
G ·

δ
w
)

.

1.4 Closed sets and representations

The core of this section is to show that an action on a finite closed set can be lifted
into a representation. We give indeed two versions of this construction: the lifting
of actions and the lifting of representations.

1.4.1 Lifting of actions

Proposition 5. Let S be a (left) K-module, δ a (right) action of A∗ on S and G a
finite subset of S.

If G is δ-closed, then there exists a K-representation κG (not necessarily unique)
of A∗ of dimension G such that αG is an action morphism between the action of A∗

on KG defined by κG and δ, that is, such that the following diagram commutes.

KG KG

S ⊇ 〈〈〈G〉〉〉 〈〈〈G〉〉〉 ⊆ S

αG αG

κG

δ (1.6)

Not to be circulated – 57 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Proof. Let βG : 〈〈〈G〉〉〉 → KG be a fixed map defined as above. Since G is δ-closed, for
every g in G and every a in A, g ·

δ
a is in 〈〈〈G〉〉〉 and hence βG

(
g ·

δ
a
)

is in KG. Let κG

be defined by

∀a ∈ A κG(a) = βG

(
G ·

δ
a
)

,

that is, since we see G as a column-vector of dimension G, βG

(
G ·

δ
a
)

is a G×G-

matrix (with entries in K) the g-th row of which is βG

(
g ·

δ
a
)
. Hence every map βG

defines a representation κG, possibly distinct from the others.
If we instanciate diagram (1.6) for x in KG and a in A, it comes:

x x · κG(a) = x · βG

(
G ·

δ
a
)

x · G = αG(x) αG(x) ·
δ
a = x ·

(
G ·

δ
a
)αG αG

(1.7)

on which we read the following sequence of equalities:

αG(x) ·
δ
a = (x · G) ·

δ
a = x · (G ·

δ
a) as δ is K-linear.

(1.8)

On the other hand x · κG(a) = x · βG

(
G ·

δ
a
)

by definition

αG(x · κG(a)) = αG

(
x · βG

(
G ·

δ
a
))

= x · αG

(
βG

(
G ·

δ
a
))

as αG is K-linear,

= x · (G ·
δ
a) by (1.5). (1.9)

The equality between the right hand-sides of (1.8) and (1.9) expresses that the
diagram (1.6) commutes.

1.4.2 Lifting of representations

Let Q be any finite set. We study the preceding case when S = KQ and δ is the
action on KQ defined by a representation µ : A∗ → KQ×Q.

Let G be a finite subset of KQ. We denote by MG the G×Q-matrix (with entries
in K) the g-th row of which is the row-vector g of KQ. In this context, to say that G

is a column-vector amounts to say that G is in
(
K1×Q

)G×1
= KG×Q that is, that G

is the matrix MG = αG(Id), where Id is the identity matrix of dimension G.

Proposition 6. Let A = 〈 I, µ, T 〉 be a K-representation of A∗ of dimension Q.
Any finite subset G of KQ, that is µ-closed and that decomposes I, determines
(not uniquely) a K-representation 〈 J, κG, U 〉 of dimension G that is conjugate to A
by MG (hence equivalent to A).

Work in Progress – 58 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Proof. Let us come back to diagram (1.6) of Proposition 5:
KG KG

K1×Q ⊇ 〈〈〈G〉〉〉 〈〈〈G〉〉〉 ⊆ K1×Q

αG αG

κG

µ

If we replace in the proof of Proposition 5 the action δ by the action µ determined
by A and G by MG, it comes

G ·
δ
a = MG · µ(a) and ∀x ∈ KG αG(x) = x · MG .

The above diagram instanciated for Id and any letter a of A yields
Id κG(a)

MG MG · µ(a) = κG(a) · MG

αG αG

which shows that for every a in A, κG(a) is conjugate to µ(a) by MG.
Furthermore, to say that G decomposes I, that is, I ∈ 〈〈〈G〉〉〉, implies that there

exists J in KG such that I = αG(J) = J · MG . If we write U = MG · T , we have
built the K-representation we wanted.

2 Control

Starting from a K-automaton, we paradoxically begin our search for small equivalent
automata by the definition and idealistic constuction of two automata that are
infinite (in the general case). In this section, we start from the given automaton
itself, in the next one from its behaviour. In some sense, we thus begin with the
effective level as the (finite) automaton (or representation) is effectively given; since
the computations may lead to an infinite automaton, this effectivity is somewhat
relative. Linear algebra will then allow to fold these infinite automata into finite
ones, hopefully, and when possible, optimally.

For the rest of this section, A = 〈 I, µ, T 〉 is a K-representation of A∗, of di-
mension Q.

2.1 The reachability set

The representation A, the morphism µ indeed, determines an action of A∗ on KQ,
called µ again, by

∀x ∈ KQ x ·
µ

w = x · µ(w) .

Definition 7. The reachability set RA of A is the orbit of I under the action µ:

RA = {I · µ(w) | w ∈ A∗} .

This set RA may well be, and in general is, infinite.

Not to be circulated – 59 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Determinisation The set RA is closed under the action µ and this action of A∗

on RA can be seen as a deterministic automaton, denoted by Â, and called the
determinisation of A as it is defined by A:

Â =
〈

A, RA, {I}, µ, T̂
〉

.

Its transitions are defined by: [I · µ(w)] ·
µ
a = I ·µ(w) ·µ(a) = I · µ(w a) and its final

function by: T̂ (x) = x · T . The automaton Â, a priori infinite, is equivalent to A.

Example 8. Let A2 and A3 be the N-automata over a∗ of dimension 1 and 2 defined
by A2 =

〈 (
1
)
,
(
2
)
,
(
1
) 〉

and by A3 =
〈 (

1 0
)
,

(
1 1
0 2

)
,

(
1
1

)〉
respectively. Their

determinisations are shown at Figure 1. The determinisation of B1 (cf. Example I.3)
is shown at Figure 2.

a |2A2
(1) (2) (4) (8)

2 4 8

a |1 a |1 a |1 Â2

a |1

a |1 a |2
A3 (

1 0
) (

1 1
) (

1 3
) (

1 7
)

2 4 8

a |1 a |1 a |1 Â3

Figure 1: Two (equivalent) N-automata and their (equal) determinisations

b

a + b a + b
B1 (

1 0
) (

1 1
) (

1 2
) (

1 3
)

1 2 3

b b b

a a a a B̂1

Figure 2: The determinisation of the N-automaton B1

The Boolean case The use of the word determinisation, as in the case of clas-
sical Boolean automata, is not a coincidence: if K = B the construction we have
described is the so-called subset construction. Every Boolean vector of BQ can be
identified with a subset of Q , and conversely. The initial state I is the set of initial
states of A, and (I · µ(w)) · µ(a) is the set of states reached by the letter a from the
set of states I · µ(w).

2.2 The state-space

So far, KQ, and thus RA, have been considered as sets without any structure. We
now bring into play the fact that KQ = K1×Q is a (left) module over K.

Definition 9. We call state-space of A the K-module KQ.

Work in Progress – 60 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Definition 10. We call control morphism of A the morphism of K-modules ΨA:

ΨA : K〈A∗〉 −→ KQ ,

defined by ΨA(w) = I ·µ(w) for every w in A∗ and extended to K〈A∗〉 by linearity.

With these definition and notation, it holds:

RA = ΨA(A∗) and Im ΨA = ΨA(K〈A∗〉) = 〈〈〈RA 〉〉〉 .

and the following statement is almost a tautology.

Proposition 11. The control morphism ΨA is an action morphism from the right
translation by A∗ on K〈A∗〉 to the action µ of A∗.

K〈A∗〉 K〈A∗〉

KQ KQ

ΨA ΨA

ρ

µ

w w a

I · µ(w) I · µ(w) · µ(a)

ΨA ΨA

Figure 3: The control morphism is a morphism of actions

Definition 12. A K-representation (or K-automaton) A is said to be controllable2

if ΨA is surjective.

The automaton A is controllable if for every point in the state space, there exists
at least one linear combination of input that leads A to that point.

3 Observation

We now define a third action of A∗, on K〈〈A∗〉〉 this time. It allows to characterise
recognisable series and to associate with every such series a minimal deterministic
automaton.

3.1 Quotient of series

The quotient of a series is the generalisation to series of the quotient of a subset of
a monoid (of a free monoid in this case).

Definition 13. Let s be in K〈〈A∗〉〉 and w in A∗. The (left) quotient of s by w is
the series denoted by w−1s and defined by:

w−1s =
∑

v∈A∗
〈s, w v〉v , that is, ∀v ∈ A∗ 〈w−1s, v〉 = 〈s, w v〉 . (3.1)

In particular, ∀w ∈ A∗ 〈w−1s, 1A∗〉 = 〈s, w〉 . (3.2)
2commandable in French.

Not to be circulated – 61 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

For every w, the operation s �→ w−1s is an endomorphism of the K-module K〈〈A∗〉〉:
it is additive:

w−1(s + t) = w−1s + w−1t ,

and commutes with the exterior multiplications of K on K〈〈A∗〉〉:

w−1(k s) = k (w−1s) and w−1(sk) = (w−1s)k .

Moreover, it is continuous. These three properties ensure that the quotient by w is
entirely defined on K〈〈A∗〉〉 by its values on A∗ since K〈A∗〉 is dense in K〈〈A∗〉〉 (cf.
Section I.2.2.1).

The associativity of concatenation implies then that

∀u, v ∈ A∗ (uv)−1s = v−1
[
u−1s

]
,

that is, thanks to the preceding properties:

Proposition 14. The (left) quotient is a (right) action of A∗ on the (left) K-
module K〈〈A∗〉〉.3

The orbit of a series s under the quotient action is denoted by Rs:

Rs =
{

w−1 s
∣∣∣ w ∈ A∗

}
.

Example 15. Let s2 = (a∗)2 =
∑

n∈N(n + 1)an in NRat a∗. For every integer k, it
holds:

(ak)−1s2 =
∑
n∈N

(k + n + 1)an = s2 + k a∗ .

All quotients of s2 are distinct and Rs2 = {s2 + k a∗ | k ∈ N}.

Example 15 shows that, in general, and in contrast with the case for (recognis-
able) languages, the family of quotients of a rational, and thus recognisable, series
is not necessarily finite. On the other hand, and despite its simplicity, it exhibits
the property that we seek: there are infinitely many quotients, but they can all be
expressed as the linear combination of a finite number of suitably chosen series.

3.2 The observation morphism

Let again A = 〈 I, µ, T 〉 be a K-representation of A∗, of dimension Q.

Definition 16. We call observation morphism of A the morphism of K-modules
ΦA : KQ −→ K〈〈A∗〉〉 defined by:

∀x ∈ KQ ΦA(x) = 〈 x, µ, T 〉 =
∑

w∈A∗
(x · µ(w) · T)w .

3In diagrams, the quotient action will be denoted by �.

Work in Progress – 62 – 21 January 2019

Lecture notes Weighted Automata and Transducers

The definition of quotient (Equation (3.1)) directly implies that if s = 〈 I, µ, T 〉 ,
then, for every w in A∗, w−1s = 〈 I · µ(w) , µ, T 〉 , that is:

Property 17. For every w in A∗, and every x in KQ, w−1ΦA(x) = ΦA(x · µ(w)).

In other words:

Proposition 18. The observation morphism ΦA is an action morphism from the
action µ of A∗ on KQ to the quotient action of A∗ on K〈〈A∗〉〉.

KQ KQ

K〈〈A∗〉〉 K〈〈A∗〉〉

ΦA ΦA

µ

�

x x · µ(w)

ΦA(x) = t w−1t = ΦA(x · µ(w))

ΦA ΦA

Figure 4: The observation morphism is a morphism of actions

From Property 17 also follows:

Property 19. Rs = ΦA(ΨA(A∗)) = ΦA(RA) .

Definition 20. A K-representation (or K-automaton) A is said to be observable
if ΦA is injective.

That is, A is observable if no two distinct starting points in the state-space of A
yield the same behaviour for A.

3.3 The minimal deterministic automaton

The set Rs is closed under the quotient action and this action of A∗ on Rs can be
seen as a deterministic automaton, denoted by As:

As = 〈 A, Rs, {s},�, c 〉 .

Its transitions are defined by

[w−1s] � a = a−1w−1s = (w a)−1s ,

its unique initial state is s, and its final function c maps every state w−1 s to its
constant term, that is, c

(
w−1s

)
= 〈w−1s, 1A∗〉 = 〈s, w〉 .

The automaton As, a priori infinite, is equivalent to A: every word w labels a
unique path with multiplicity 1K from the initial state s to the state w−1 s and the
final function gives that computation the weight 〈s, w〉 by definition.

If s is a B-series, that is, if s is a language L, then AL is the minimal automaton
of L. The well-known relation between the determinisation of an automaton and
the minimal automaton of the recognised language generalises to series.

Not to be circulated – 63 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Strictly writing, we have defined Out-morphisms and quotients for finite (K)-
automata only but in the same way we have defined the weight of a word for finite
automata and noted that it could be defined for infinite deterministic automata
(Note I.3, p.6), Out-morphisms and quotients are easily defined also for infinite
deterministic K-automata since the definition coincide with the one for finite de-
terministic automata: two states can be merged if they have the same transitions
to the other (merged) states, and give the final function the same value.

Proposition 21. Let s be a K-recognisable series and A any finite K-automaton
that realises s. Then As is the minimal quotient of Â.

Proof. By Property 19, we already know that Rs = ΦA(RA). Stating that ΦA is a
morphism of actions is exactly the same thing as saying that ΦA is an Out-morphism
between the deterministic automata induced by these actions, here, from Â onto As.

Conversely, every state of As corresponds to the series that is accepted by this
state taken as the initial state. Thus, two distinct states of As correspond to distinct
series and then cannot be mapped by a morphism onto the same state of a proper
quotient since they would correspond to the same series.

3.4 Stability

The notion of quotient allows us to give an intrinsic characterisation of recognisable
series, via the one of stability.

Definition 22. A subset U of K〈〈A∗〉〉 is called stable if it is closed under quotient;
that is, for every s in U and every w in A∗, w−1s is in U .

Theorem 23 (Fliess–Jacob). A series of K〈〈A∗〉〉 is K-recognisable if and only if it
is contained in a stable finitely generated submodule of K〈〈A∗〉〉.

Proposition 24. If s is a series realised by A, then Im ΦA is a stable (finitely
generated) submodule of K〈〈A∗〉〉 that contains s.

Proof. The submodule Im ΦA is finitely generated since KQ is, is stable since ΦA is
a morphism of actions, and contains s = ΦA(I) .

Proposition 25. Let U be a stable submodule of K〈〈A∗〉〉 generated by a finite set G.
Then, every series in U is realised by a K-representation of dimension G.

Proof. Proposition 5, applied to the case where S = K〈〈A∗〉〉 and δ is the quotient,
yields a K-representation κG of dimension G. Every g in G is a series in K〈〈A∗〉〉; let
us denote by T = 〈G, 1A∗ 〉 the (column) vector whose g-th entry is 〈g, 1A∗ 〉.

If a series s is in U , there exists an x in KG such that s = x · G . By definition
of κG, for every w in A∗, w−1s = x · κG(w) · G and then

〈s, w〉 = 〈w−1s, 1A∗〉 = 〈x · κG(w) · G, 1A∗〉 = x · κG(w) · 〈G, 1A∗ 〉 = x · κG(w) · T .

Work in Progress – 64 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Hence s is realised by 〈 x, κG, T 〉.

Propositions 24 and 25 together prove Theorem 23.

4 Reduction of representations in a field

We now suppose that K is a field, not necessarily commutative, hence a skew field,
or division ring. The preceding considerations about quotients of series will take
on, we might say, a new dimension since the ring of series K〈〈A∗〉〉 is not only a
K-algebra, but a (left) K-vector space, and the dimension of subspaces will give us
a new invariant.

We use the notion of dimension essentially via two results:

• Every submodule V (called subspace) of a vector space is given a dimen-
sion dim V and if V ⊆ V ′, and dim V = dim V ′ finite, then V = V ′.

• From every generating set G of a subspace V of finite dimension, one can
effectively extract a basis, that is, a free generating set of V .

For the rest of this section, K is a division ring.

4.1 Rank of a series

Definition 26. The rank r(s) of a series s of K〈〈A∗〉〉 is the dimension of the subspace
of K〈〈A∗〉〉 generated by Rs the set of (left) quotients of s:

r(s) = dim 〈〈〈Rs 〉〉〉 .

In this setting, and with no further ado, Theorem 23 becomes — since 〈〈〈Rs 〉〉〉 is
obviously stable and contains s:

Theorem 27. A series s of K〈〈A∗〉〉 is recognisable if and only if r(s) is finite.

Let A be a K-representation of dimension n that realises s.4 From Property 19
follows that r(s) is smaller than, or equal to, dim(Im ΦA) which is smaller than, or
equal to, n. Hence the minimal dimension of a representation for s is r(s).

Definition 28. A representation of a recognisable series s is reduced if its dimension
is equal to the rank of s.

From Proposition 25 follows that reduced representations do exist since we have:

Property 29. With every basis of 〈〈〈Rs 〉〉〉 is associated a reduced representation of s.
4In this context where we compare dimensions, it is more convenient they be integers rather than

sets.

Not to be circulated – 65 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Conversely, reduced representations are characterised by the following statement.

Theorem 30. A K-representation A is reduced if and only if it is both controllable
and observable, that is, if and only if ΨA is surjective, and ΦA injective.

Proof. Let s be the series realised by A. The morphism

ΦA ◦ ΨA : K〈A∗〉 −→ K〈〈A∗〉〉 is such that [ΦA ◦ ΨA](w) = w−1s

for every w in A∗ and Im [ΦA ◦ ΨA] is the subspace 〈〈〈Rs 〉〉〉. For the dimension of
Im [ΦA ◦ ΨA] be equal to n, the dimension of A, it is necessary, and sufficient, that
the dimension of both Im ΨA and Im ΦA be equal to n. The second equality holds
if and only if the dimension of Ker ΦA is zero.

4.2 Reduction of a representation

It is not enough to know that reduced representations exist and to characterise
them. We want to effectively compute them and, for that purpose, we establish the
following.

Theorem 31. A reduced representation of a recognisable series s is effectively com-
putable from any representation that realises s with a procedure whose complexity is
cubic in the dimension of the representation.

For the rest of this section, let A be a K-representation of A∗ of dimension n,
that realises the series s = A . Let us first assume that, given A, one can effectively
compute a basis of the subspace Im ΨA (this will be proved in the next subsection,
where the complexity of the whole procedure will be established as well).

Proposition 32. Let G be a basis of the state-space Im ΨA, of cardinal m. This
basis determines a K-representation A′ of dimension m, conjugate to A, and with
the properties:

(i) ΨA′ is surjective (A′ is controllable);
(ii) if ΦA is injective, so is ΦA′ (if A is observable, so is A′).

Proof. By Proposition 6 and with the notation set there, the existence of G, generat-
ing set of Im ΨA of cardinal m, implies the one of a K-representation A′ = 〈 J, κG, U 〉
of dimension m which is conjugate to A = 〈 I, µ, T 〉 by MG, that is, such that:

I = αG(J) = J · MG , ∀a ∈ A κG(a) · MG = MG · µ(a) , U = MG · T .

Since G is a basis, dim(Im ΨA) = dim(KG) = m and αG is injective. The diagram of
Figure 5, that will be shown to commute, helps in understanding the next sequences
of equalities.

Work in Progress – 66 – 21 January 2019

Lecture notes Weighted Automata and Transducers

K〈A∗〉

KQ KG

K〈〈A∗〉〉

ΨA

ΦA

ΨA′

ΦA′

αG

Figure 5: A diagram for Proposition 32

For every w in A∗, it then comes:

ΨA(w) = I · µ(w) = αG(J) · µ(w) = J · MG · µ(w)
= J · κG(a) · MG = αG(J · κG(a)) = αG(ΨA′(w)) .

Hence ΨA = αG ◦ΨA′ . Since dim(Im ΨA) = m and αG is injective, dim(Im ΨA′) = m

and ΨA′ is surjective.
Let x in ΨA′(A∗), that is, there exists w in A∗ such that x = ΨA′(w).

Then ΦA′(x) = ΦA′(ΨA′(w)) = w−1s .
On the other hand, ΦA(αG(ΨA′(w))) = ΦA(ΨA(w)) = w−1s , and then

ΦA′(x) = ΦA(αG(x)) . (4.1)

Since ΨA′(A∗) generates KG, (4.1) holds on the whole space KG and ΦA′ = ΦA ◦αG .
Since αG is injective, if ΦA is injective, so is ΦA.

We now introduce the transpose of the representation A, tA = (tT, tµ, tI)
where tµ(a) = t(µ(a)) for every a in A and it comes tµ(w) = t(µ(tw)) for every w

in A∗. We then have the following connection between A and tA.

Remark 33. The use of the transpose of a K-representation is not satisfactory as it
is not well-defined when K is not commutative, a case that we want to cover. On
the other hand, it is an easy shortcut, as it save the definition of the dual of every
notion we have defined so far (state-space, control morphism, etc.). It is enough to
say that it is legitimate for the case where K is commutative, which holds in all the
forthcoming examples and exercices and that there exists a method to overcome the
problem when needed (as in the case of Corollary 43 for instance).

Lemma 34. If Ψ tA is surjective, then ΦA is injective.

Proof. If ΦA(x) = 0 then x · µ(w) · T = 0 for every w in A∗ and x belongs to the
orthogonal of the subspace generated by the vectors {µ(w) · T | w ∈ A∗} which is
of dimension n by hypothesis: thus x = 0 .

Proof of Theorem 31. Starting from a representation A, we first compute a basis
for the state-space of tA which determines a representation tA′ such that Ψ tA′ is

Not to be circulated – 67 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

surjective, and thus by Lemma 34, ΦA′ is injective. We then compute a basis for the
state-space of A′ which determines a representation A′′ such that ΨA′′ is surjective
and ΦA′′ is injective: A′′ is reduced.

The proof of Theorem 31 will be complete when we have proved that basis for
the state-spaces are effectively computable (with the ascribed complexity).

4.3 Effective computations

Word basis

Definition 35. We call word basis for A a prefix-closed subset P of A∗ such that
the set ΨA(P) = {I · µ(p) | p ∈ P} is a basis of Im ΨA .

Proposition 36. Word basis for A do exist.

Proof. If I = 0, Im ΨA is the null vector space, of dimension 0 and the empty set
(which is prefix-closed!) is a word basis. Assuming that I is non-zero, the family of
prefix-closed subsets P of A∗ such that {I · µ(p) | p ∈ P} is a free subset of Kn is
not empty since it contains at least the singleton {1A∗} . Every such subset contains
at most k = dim(Im ΨA) elements and there exist thus maximal elements (for the
inclusion order) in that family.

It remains to show that such a maximal element P is a word basis, that is,
ΨA(P) generates Im ΨA . By way of contradiction, let w in A∗ such that I · µ(w)
does not belong to 〈〈〈ΨA(P) 〉〉〉 ; the word w factorises in w = pg , with p in P , and
we choose w in such a way that g is of minimal length. The word g is not empty:
g = ah , with a in A, and I · µ(w) = I · µ(pa) · µ(h) . As P is maximal, I · µ(pa)
belongs to 〈〈〈ΨA(P) 〉〉〉 that is, I · (pa)µ =

∑
pi∈P

xi (I · µ(pi)) . It then follows

I · µ(w) =

 ∑
pi∈P

xi (I · µ(pi))

 · µ(h) =
∑

pi∈P

xi (I · µ(pih)) .

By the minimality of g, every I · µ(pih) belongs to 〈〈〈ΨA(P) 〉〉〉 : contradiction.

In the sequel, we do not consider the trivial case I = 0 anymore.

If P is a non-empty prefix-closed subset of A∗, the border of P is the set:

C = P A \ P .

As an example, the prefix-closed subset {1A∗ , b, ba} and its border {a, bb, baa, bab}
are shown in Figure 6.

The following proposition and its proof exhibit the computation underlying Pro-
position 32.

Work in Progress – 68 – 21 January 2019

Lecture notes Weighted Automata and Transducers

1A∗

a b

ba

baa bab

bb

Figure 6: A prefix-closed subset and its border

Proposition 37. Word basis for A are effectively computable, with complexity
O(dn3), where d is the cardinal of A.

Proof. We set P0 = {1A∗} and C0 = ∅ . The algorithm to compute a word basis P

can be written in the following manner.
If Ek = (Pk A \ Pk) \ Ck is non-empty, choose an arbitrary w in Ek and decide

whether I · µ(w) belongs to 〈〈〈I · Pkµ 〉〉〉 .
(i) If not, then Pk+1 = Pk ∪ {w} and Ck+1 = Ck .
(ii) If so, then Pk+1 = Pk and Ck+1 = Ck ∪ {w} .

Set k = k + 1 and start again.
The algorithm terminates when Ek is empty and at that moment Ck = Pk A \ Pk

is the border of Pk. The algorithm must terminate since Pk has at most n elements,
so Pk ∪ Ck has at most ‖A‖n + 1 elements and this set grows by 1 at each step of
the algorithm.

By construction, Pk is prefix-closed, and each element w of Ck is such that I ·µ(w)
belongs to 〈〈〈I · µ(Pk) 〉〉〉: when Ek is empty, Pk is maximal.

Gaussian elimination The foregoing proofs all correspond to effective computa-
tions, assuming of course that the operations in K (addition, multiplication, taking
the inverse) are effective. All the complexities that follow are calculated assuming
that each operation in K has a fixed constant cost, independent of its operands.5

Computations in Kn are based on the Gaussian elimination procedure.

Definition 38. A sequence of k vectors (x1, x2, . . . , xk) of Kn is an echelon system
if, for all i in [k]:

(i) xi
i = 1K ; (ii) ∀j < i xi

j = 0K .

An echelon system is free and hence k � n . The following proposition is classic,
at least for commutative fields, and its proof is not really different for division rings.

Proposition 39 (Gaussian elimination). Let K be a skew field and let us view Kn

as a left vector space over K. Let S = (x1, x2, . . . , xk) be an echelon system and
let y be a vector in Kn.

5It is to be acknowledged that this is a completely unrealistic assumption.

Not to be circulated – 69 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

(i) We can decide whether y is in 〈〈〈S 〉〉〉, the subspace generated by S, and, in this
case, compute effectively the coordinates of y in S.

(ii) If y is not in 〈〈〈S 〉〉〉, we can compute effectively y′ such that S′ = S ∪ {y′} is
echelon and generates the same subspace as S ∪ {y}.

The complexity of these operations (deciding whether y is in 〈〈〈S 〉〉〉 and computing
the coordinates of either y or y′) is O(k n).

From this proposition we deduce the effective nature of the assertions, construc-
tions, and specifications used in the proofs of this section. More precisely:

Corollary 40. Let S be a finite set of vectors of Kn and let y be in Kn. We can:
(i) decide whether y belongs to 〈〈〈S 〉〉〉;
(ii) extract effectively from S a basis T of 〈〈〈S 〉〉〉;
(iii) compute effectively the coordinates in T of an (explicitly given) vector of 〈〈〈S 〉〉〉.

5 Applications of the reduction of recognisable series

5.1 Decidability of the equivalence

Even if a series has not a unique reduced representation (they are all similar),
the existence of reduced representations implies the decidability of equivalence for
automata with weights in a field.

Theorem 41. The equivalence of recognisable series over A∗ with coefficients in a
(sub-semiring of a) skew field — and thus of rational series — is decidable, with a
procedure which is cubic in the dimension of the representation of the series.

Proof. Let K be a sub-semiring of a skew field F. Two series s1 and s2 of KRec A∗

are also in FRec A∗ and s1 = s2 holds if and only if (s1 − s2) is a series of FRec A∗

of rank 0, and the rank of (s1 − s2) can be computed effectively.

This result, together with the well-known decidability of equivalence of classical
Boolean automata, should not let us think that this is the universal status. For
instance, the following holds.

Theorem 42 (Krob). The equivalence of recognisable series over A∗ with coefficients
in the semiring M = 〈N, min, + 〉 is undecidable.

Theorem 41 has however far reaching and to some extent ‘unexpected’ con-
sequences, as the following one, discovered by T. Harju and J. Karhumäki.

Corollary 43. The equivalence of rational series over A∗
1×A∗

2×· · ·×A∗
k with coeffi-

cients in N is decidable.

Work in Progress – 70 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Proof. A series in NRat (A∗
1×A∗

2×· · ·×A∗
k) is a series in [NRat (A∗

2×· · ·×A∗
k)]Rat A∗

1.
By Theorem 46, the latter family is isomorphic to [NRat (A∗

2×· · ·×A∗
k)]Rec A∗

1 and
the decidability of equivalence follows from Theorem 44.

Theorem 44. NRat (A∗
2×· · ·×A∗

k) is a sub-semiring of a skew field.

This result is the direct consequence of a series of classical results in mathematics cf. EAT, Sec. IV.7,
p. 616which we shall not present here.

5.2 From the series to the representation

Another way to exploit Proposition 32, is by ‘computing’ the coefficients of a reduced
representation of a recognisable series as a function of the coefficients of the series
itself. Going from the series back to the representation does not so much correspond
to an effective procedure as it expresses a fundamental property of recognisable series
on a field (see an application with Theorem 46).

Proposition 45. Let K be a skew field, s a K-recognisable series of rank n , and
〈 I, µ, T 〉 a reduced representation of s . There exist two sets of n words: P =
{p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} (which we can choose to be respectively
prefix-closed and suffix-closed) and two n×n matrices αP and βQ such that

∀w ∈ A∗ µ(w) = αP · (〈s, pi w qj〉) · βQ ,

where (〈s, pi w qj〉) denote the n×n matrix whose entry (i, j) is 〈s, pi w qj〉 .

A remarkable application of this result is the following.

Theorem 46. Let K be a (skew) field. If s is a K-rational series with a finite image,
then k s−1 is rational for all k in K.

Proof. Let 〈 I, µ, T 〉 be a reduced representation that recognises s. By Proposi-
tion 45, the image µ(A∗) is a finite submonoid of KQ×Q if s has a finite image and
the conclusion follows.

Not to be circulated – 71 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

6 Exercises

1. Compute the reduced representation of the following N-automaton.

a

a a

a

2a

a

2. Let A1 be the Q-automaton on {a}∗ shown at Figure 7 (the unique letter a of the alphabet
is not shown on the transitions of the figure). Compute a reduced automaton, equivalent
to A1.

−1

1

−1
1

−2
1

−1

−1

3

1

2

Figure 7: The Q-automaton A1

3. Consider the minimal (Boolean) automaton of {an | n ≡ 0, 1, 2, 4 (mod 7)} as an auto-
maton with multiplicity in Z/2Z and reduce it. Comment.

4. Let F be a field. Show that two F-recognisable series over A∗ are equal if and only if they
coincide on all the words of length less than the sum of the dimensions of the representations
which realise them.

Show the bound is sharp. [Hint: consider the following two automata.]
a a a a

a

5. Discriminating length. We call the discriminating length between two non-equivalent
(Boolean) automata A and B the length of a shortest word which is accepted by one and not
the other. We write Ld(n, m) (resp. Lnd(n, m)) for the maximum of the discriminating
lengths when A and B have respectively n and m states and are deterministic (resp. and
are non-deterministic).

(a) With methods relevant to Boolean automata, show that Ld(n, m) � nm .

(b) Compute Ld(n, m) .

(c) Give an upper bound for Lnd(n, m) .

Work in Progress – 72 – 21 January 2019

Lecture IV

Transducers (1)
The 2-tape Turing machine model

This part which spans over the last two lectures studies the model of finite automata
‘with output’ which are usualy called ‘transducers’. They can be seen as (finite)
automata over a direct product of free monoids as well as (finite) automata over a
free monoid with multiplicities in the (rational) subsets of another free monoid, or of
a direct product of free monoids. These two models are also equivalent to ‘one-way’
Turing machines with two or more tapes. In this lecture, we consider the first model
only, the second one is subject of the next lecture.

Contents
1 Definitions . 74

1.1 Transducers . 74
1.2 Word relations . 75
1.3 Rational relations . 77

2 Working on the model and examples 77
2.1 Normalisation . 77
2.2 Examples . 79
2.3 Extension . 81
2.4 Transducers as machines . 83

3 Some facts . 84
3.1 Intersection, complement 84
3.2 Equivalence . 85
3.3 Composition . 86

4 Undecidability results . 86
5 Composition and evaluation 88

5.1 The Composition Theorem 88
5.2 Two consequences . 90

6 Exercises . 91

73

2.16 – Finite automata based computation models MPRI 2018/2019

Automata ‘with output’ are a very natural, even a necessary, extension of auto-
mata that ‘read’ sequences of symboles. Since the dawn of automata theory (that
is, the second half of the fifties), kinds of such automata with output were studied:
Moore machines in which the sequences of states reached in the course of the reading
of a word are observed, Mealy machines in which an output letter is associated with
every transition. These two models are indeed equivalent up to some adjustment.
We start with a model which is strictly more general.

On the other hand, we could define weighted transducers - an even more general
model, and more in line with the first three lectures. But their study is somewhat
more difficult and requires to have the theory of Boolean transducers in background.

1 Definitions

In the sequel, A and B are two alphabets. The set A∗×B∗ of pairs (u, v) with u

in A∗ and v in B∗, equipped with the product:

(u, v) (u′, v′) = (uu′, v v′)

is a monoid, whose identity element is (1A∗ , 1B∗), most often denoted by (1, 1).
The length of an element of A∗×B∗ is the sum of the lengths of its components:
|(u, v)| = |u| + |v| . The monoid A∗×B∗ is graded (Definition I.32). Similarly,
A∗

1 ×A∗
2 ×· · ·×A∗

k , the set of k-tuples of words equipped with the componentwise
product is a graded monoid.

1.1 Transducers

Definition 1. A transducer is an automaton over A∗×B∗ or, more generaly, over
A∗

1×A∗
2×· · ·×A∗

k, that is, an automaton whose transitions are labelled with k-tuples
of words.

In (almost) all examples, k = 2. In the sequel, we also speak of ‘pairs’ rather
than of ‘k-tuple’, unless stated otherwise.

A transducer is thus implicitely here a Boolean automaton1 which can be de-
noted by T = 〈 A∗×B∗, Q, I, E, T 〉 where, as in the preceding lectures, Q is the
state set, I and T are the sets of initial and final states respectively and where
E ⊆ Q×(A∗×B∗)×Q is the set of transitions. Figure 1 shows four transducers.

We thus write p
(u,v)−−−−→ q for a transition and

c = p0
(u1,v1)−−−−−→ p1

(u2,v2)−−−−−→ p2 · · · pn−1
(un,vn)−−−−−−→ pn

1We could have defined weighted transducers but their study is somewhat more complex and we
need to know the theory of Boolean transducers first.

Work in Progress – 74 – 21 January 2019

Lecture notes Weighted Automata and Transducers

(a, a)

(b, b)

(a)

(a, 1) (b, 1)

(1, a) (1, b)

(b)

(a, b)

(b, a)

(c)

(a, a)

(b, b)

(b, b)
(a, a)

(a, 1)

(b, 1)

(d)
Figure 1: Four transducers

for a computation of T . The label of a computation is the product of the labels of
its transitions and we write:

c = p0
(u1u2···un,v1v2···vn)−−−−−−−−−−−−−−→ pn .

A computation is successful if its origin is an initial state and if its destination is a
final state. A pair of words (u, v) in A∗×B∗ is accepted by T if it is the label of a
successful computation of T . The behaviour of T , denoted by T , is the the set of
pairs of words accepted by T :

T =
{

(u, v) ∈ A∗×B∗
∣∣∣∣ ∃i ∈ I , ∃t ∈ T i

(u,v)−−−−→
T

t

}
.

Examples 2. The transducer of Fig.1(a) accepts the set of pairs (u, u) where u is
any word of {a, b}∗; the one of Fig.1(b) accepts the set of pairs (u, v) where u and v

are any words of {a, b}∗; the one of Fig.1(c) accepts the set of pairs (u, v) where u

is any word of {a, b}∗ and where v is obtained from u by replacing the a’s by b’s
and the b’s by a’s; the one of Fig.1(d) accepts the set of pairs (u, v) where u is any
word of {a, b}∗ and where v is obtained from u by replacing every block of a’s by a
unique a and every block of b’s by a unique b.

The behaviour of a transducer is thus a subset of A∗×B∗, that is, what we call
a relation between words, or a word relation.

1.2 Word relations

Relations A relation θ from A∗ to B∗ is written (with a slight abuse) θ : A∗ → B∗

and is defined by its graph θ̂ ⊆ A∗×B∗ . By definition, a relation from A∗ to B∗

associates with every word of A∗ a subset of B∗:

∀u ∈ A∗ θ(u) =
{

v ∈ B∗
∣∣∣ (u, v) ∈ θ̂

}
.

The underlying idea is that the first component of a pair (u, v) is an ‘input’ and
that the second component is the ‘output’. This point of view gives distinct roles to
the two components of the pair but does not break the symmetry between them.

Not to be circulated – 75 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Inverse Indeed, A∗ and B∗ play symmetric roles by the way of the graph of θ and
the inverse relation of θ,

θ−1 : B∗ → A∗ ,

is defined as the relation from B∗ to A∗ which has the same graph as θ, modulo the
canonical identification between A∗×B∗ and B∗×A∗:

∀v ∈ B∗ θ−1(v) =
{

u ∈ A∗
∣∣∣ (u, v) ∈ θ̂

}
.

Additivity By definition, a relation is extended by additivity:

∀L ⊆ A∗ θ(L) =
⋃

u∈L

θ(u)

and is thus viewed as an application from P (A∗) to P (B∗). Hence, the notion of
relation implicitely carries with itself the property of additivity.

A contrario, complementation for instance, which associates with every subset
of A∗ a subset of A∗, is not a relation from A∗ to itself.

Complement By definition, the complement of a relation θ : A∗ → B∗ is the
relation �θ : A∗ → B∗ whose graph is the complement in A∗×B∗ of the graph of θ:

�̂θ = �θ̂ that is, ∀u ∈ A∗ [
�θ

]
(u) = �B∗θ(u) .

Domain and image If θ : A∗ → B∗ is a relation, the domain and the image of θ

are the projections of θ̂ onto A∗ and B∗ respectively:

Dom θ =
{

u ∈ A∗
∣∣∣ ∃v ∈ B∗ (u, v) ∈ θ̂

}
and

Im θ =
{

v ∈ B∗
∣∣∣ ∃u ∈ A∗ (u, v) ∈ θ̂

}
.

Of course, Dom θ−1 = Im θ and Im θ−1 = Dom θ . It also holds u �∈ Dom θ if and
only if θ(u) = ∅ .

Generalisation to k-ary relations The relations of, or predicats on,
A∗

1×A∗
2×· · ·×A∗

k — called k-ary relations — are defined by their graphs, which are
subsets of A∗

1 ×A∗
2 ×· · ·×A∗

k . What has been said above of additivity, inherent to
the notion of relation, or of the complement of a relation, is naturally extended to
k-ary relations. There are many ways2 of ‘currying’ a relation of A∗

1×A∗
2×· · ·×A∗

k

and the other notions: domain, image, inverse have a meaning only with respect to
the way the ‘input’ and the ‘output’ components are chosen in the k-tuples elements
de A∗

1×A∗
2×· · ·×A∗

k. A natural generalisation is the one that could be denoted by
θ : A∗

1 → A∗
2×· · ·×A∗

k , where the input is a word of A∗
1 and the output a (k−1)-tuple

of words in A∗
2×· · ·×A∗

k.
2Properly speaking, ‘currying’ a function with several arguments consists in transforming it into

a one-argument function which returns a function over the rest of the arguments.

Work in Progress – 76 – 21 January 2019

Lecture notes Weighted Automata and Transducers

1.3 Rational relations

The behaviour of a transducer is a subset of a direct product of free monoids; a
transducer thus realises a relation, the one whose graph is the behaviour of this
tranducer. For instance, the transducer of Fig.1(a) realises the identity function,
the one of Fig.1(b) the universal relation. The Fundamental Theorem of Finite
Automata yields a first characterisation of the relations realised by finite transducers.
Let us first recall the definition of rational subsets, which holds in any monoid.

Definition 3. Rat A∗×B∗ is the smallest family of subsets of A∗×B∗ which contains
the finite subsets and which is closed under the operations of sum, product and star.

Let us recall also that a subset (of a monoid) is rational if and only if it is denoted
by a rational expression.

Definition 4. A relation θ : A∗ → B∗ is rational if so is its graph, that is, if
θ̂ ∈ Rat A∗×B∗ .

From the definition itself follows:

Property 5. The inverse of a rational relation is a rational relation.

The Fundamental Theorem of Finite Automata applied to transducers yields:

Theorem 6 (Elgot & Mezei 1965). θ : A∗ → B∗ is a rational relation if and only
if θ̂ = T where T is a finite transducer over A∗×B∗.

If the label of every transition of a transducer T is mapped onto its first (resp.
its second) component, one gets an automaton whose transitions are labelled by
words — possibly empty — and which accepts the domain (resp. the image) of the
relation realised by T . This implies the following.

Corollary 7. θ : A∗ → B∗ rel. rat. =⇒ Dom θ ∈ Rat A∗ , Im θ ∈ Rat B∗ .

2 Working on the model and examples

The converse implication of Theorem 6 can, and must, be made more precise. In
order to deal efficiently with transducers, it is convenient to have indeed a more
constrained definition that does not diminish the power of the model, and also to
be able to enrich it without making it more powerful.

2.1 Normalisation

The alphabet A freely ‘generates’ A∗ since every word of A∗ is the product of a
unique sequence of letters of A. The set (A×{1B∗ })∪ ({1A∗}×B) generates A∗×B∗

Not to be circulated – 77 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

since every pairs in A∗×B∗ is the product of sequences of elements in (A×{1B∗ }) ∪
({1A∗}×B), but these sequences are not unique (in general):

(ab, bab) = (a, 1)(1, b) (1, a) (b, 1)(1, b) = (1, b) (a, 1)(b, 1)(1, a) (1, b) .

One can also take (A×{1B∗ }) ∪ ({1A∗}×B) ∪ (A×B) as generating set of A∗×B∗;
it allows to have shorter decomposition sequences:

(ab, bab) = (a, b) (b, a) (1, b) = (1, b) (a, a) (b, b) .

The automata over A∗ are defined with transitions labelled in A and it is known
that the model is not more powerful, that is, does not accept more languages, if one
allows labels in the whole A∗. For transducers, we follow a reverse process: they are
defined with transitions whose labels are taken in the whole A∗×B∗, and one shows
that the model is not less powerful, that is, does not accept fewer relations, if the
set of authorised labels is constrained.

Definition 8. (i) A transducer over A∗×B∗ whose labels are in

(A×{1B∗ }) ∪ ({1A∗}×B)

is called a normalised transducer.
(ii) A transducer over A∗×B∗ whose labels are in

(A×{1B∗ }) ∪ ({1A∗}×B) ∪ (A×B)

is called a subnormalised transducer.

The transducers (a), (c) and(d) of Figure 1 are subnormalised, the transducer (b)
is normalised.

Proposition 9.
Every transducer is equivalent to a normalised (or subnormalised) transducer.

Proof. The process for transforming an arbitrary transducer into a normalised (or
subnormalised) one is the same as in the case of automata over A∗ labelled with
words. It starts with the replacement of every transition whose label (u, v) is of
length � = |u|+|v| greater than 1 by � transitions labelled in (A×{1B∗ })∪({1A∗}×B)
or by k transitions labelled in (A×{1B∗}) ∪ ({1A∗}×B) ∪ (A×B), with k contained
between max(|u|, |v|) and �.

In order to get a normalised, or subnormalised, transducer, it is necessary to elim-
inate the transitions which are labelled with (1, 1), the identity element of A∗×B∗,
and whose presence is not ruled out by Definition 1. This elimination is the result
of a classical algorithm which can be described in a slightly more general frame-
work and which is worth to be explicitely given as it will be used later in another
construction.

Work in Progress – 78 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Let M be a monoid. An automaton over M is a graph whose transitions are
labelled with elements of M . Such an automaton is said to be proper if none of its
transitions are labelled with the identity element of M .

Theorem 10.
Every finite automaton over M is equivalent to a proper finite automaton.

Proof. Let A = 〈 M, Q, I, E, T 〉 be an automaton over M . We write: E = F ∪ S

where S is the set of spontaneous transitions of A, that is, the transitions labelled
with 1M . Without loss of generality, we assume that S is a transitive subgraph
of A: adding the transitions corresponding to the transitive closure of the set of
spontaneous transitions in A may indeed change the computations of A, but not
their labels. A computation of A is then of the form:

c = p0
m1−−−→ p1

m2−−−→ p2 · · · pn−1
mn−−−→ pn ,

and, thanks to the hypothesis on S, no two consecutive mi are both equal to 1M .
Let B = 〈 M, Q, J, G, T 〉 be the automaton defined by:

G = F ∪ {(p, m, r) | ∃q ∈ Q (p, m, q) ∈ F and (q, 1M , r) ∈ S} and
J = I ∪ {j | ∃i ∈ I (i, 1M , j) ∈ S}

which is then easily seen to be equivalent to A.

This construction completes the proof of Proposition 9.
This result is also interesting in that it allows the use of spontaneous transitions

for the construction of compact transducers as we see in the next series of examples.

Remark 11. The construction described in the proof of Theorem 10 can be called
a forward closure as the new transitions are built with the spontaneous transitions
that follow transitions labelled with elements different from the identity element.
Another proper automaton equivalent to A can obviously be built by means of a
dual backward closure.

2.2 Examples

Examples 12. (i) Universal relation, direct product of rational sets.
The universal relation, that is, the relation whose graph is the whole A∗×A∗,

is realised by the transducer of Figure 1(b). It is also realised by the transducer
below, in which every element of A∗×A∗ is the label of a unique computation (and
which demonstrates the benefit of spontaneous transitions).

(a, 1)

(b, 1)

(1, a)

(1, b)

(1, 1)

Not to be circulated – 79 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

If K is a language of A∗, accepted by A, and L a language of B∗, accepted by B,
we transform A into a transducer A′ by replacing the label ‘a’ of every transition
by ‘(a, 1)’ and B into a transducer B′ by replacing the label ‘b’ of every transition
by ‘(1, b)’ respectively, as shown below.

a

A

(a, 1)

A′

b

B

(1, b)

B′′

Figure 2: Transformation of automata into transducers

The transducer of Figure 2 realises the relation whose graph is K×L.

(a, 1)

A′

(1, b)

B′′

(1, 1)

Figure 3: A transducer for K×L

(ii) Identity, morphisms. The identity, that is, the relation whose graph
is {(w, w) | w ∈ A∗}, is realised by the transducer of Figure 1(a). A morphism
ϕ : A∗ → B∗ is realised by the transducer below.

(a, ϕ(a))

(b, ϕ(b))

(iii) Intersection with a rational set. If K is a language of A∗, the intersec-
tion with K is a relation from A∗ into itself, denoted by ιK , and defined by:

∀w ∈ A∗ ιK(w) =

 w if w ∈ K

undefined (or ∅) otherwise .

If K is accepted by A, the relation ιK is realised by the transducer A′′′ obtained
from A by remplacing the label ‘a’ of every transition by ‘(a, a)’, as shown below.

a

A

(a, a)

A′′′

Figure 4: A transducer for ιK

(iv) Factors, subwords. The relation from A∗ into itself which associates with
every word its factors is realised by the transducer shown at Figure 5(a); the one
which associates its subwords is realised by the transducer shown at Figure 5(b).

Work in Progress – 80 – 21 January 2019

Lecture notes Weighted Automata and Transducers

(a, 1)

(b, 1)

(a, a)

(b, b)

(a, 1)

(b, 1)

(1, 1) (1, 1)

(a)

(a, a) (b, b)

(a, 1) (b, 1)

(b)

Figure 5: Factors and subwords

(vi) Operations on numbers written in base p. When a base p is chosen,
numbers (non-negative integers) are written3 on the alphabet Ap = {0, 1, . . . , p−1}
and operations on numbers are functions from A∗

p, or (A∗
p)2, or (A∗

p)3, etc. into A∗
p.

Some are realised by finite transducers. Figure 6 shows the example of the (integer)
division by a fixed integer k, in the case where p = 2 and k = 3.

0 1 2
(1, 0)

(1, 1)

(0, 0)

(0, 1)

(0, 0) (1, 1)

Figure 6: Integer division by 3 of numbers written in binary

2.3 Extension

2.3.1 k-ary transducers

As mentioned in Definition 1, a transducer may be an automaton over a direct
product A∗

1 ×A∗
2 ×· · ·×A∗

k of k free monoids, not only an automaton over a direct
product A∗×B∗ of two free monoids. And as it has been mentioned as well, there
are multiple ways of ‘currying’ a relation over A∗

1×A∗
2×· · ·×A∗

k. From a theoretical
point of view, it may be interesting to see such a relation as a function from A∗

1 into
the subsets of A∗

2×· · ·×A∗
k. From a practical point of view, it is more common to see

the first k−1 components of a k-tuple as the ‘input’ and the k-th component as the
result, that is, to view the relation as a map from A∗

1×A∗
2×· · ·×A∗

k−1 into P (A∗
k).

Example 13. Product in A∗. The relation π : A∗ ×A∗ → A∗ which associates
with every pair of words their product: π(u, v) = uv for every u, v in A∗, is realised
by the transducer below.

(a, 1, a)

(b, 1, b)

(1, a, a)

(1, b, b)

(1, 1, 1)

Figure 7: A 3-ary transducer for the product of words
3When alphabets of digits are used, the empty word is written ε.

Not to be circulated – 81 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

The notions of normalised or subnormalised k-ary transducers are defined in an
obvious manner and every k-ary transducer is equivalent to a normalised or subnor-
malised one (as is the transducer above if its spontaneous transition is eliminated).
It is useful to have this possible extension from 2 to k free monoids in mind but, as
already said, we almost exclusively consider transducers over A∗×B∗ in the sequel.

2.3.2 Left transducers, right transducers

A second variation on the model of transducers concerns the direction of reading.
When we wrote that the label of a computation is the product of the labels of the
transitions that make this computation (in an automaton or a transducer), it seemed
understood that this product be from left to right. This corresponds to the reading
from left to right in the machine model described in the next subsection. A reverse
convention would have been as justified. There are even cases — as is Example 14
below — for which it is more natural.

This problem may be solved by means of transposition. The transpose, or mirror
image, of a word w = a1 a2 · · · an is the word tw = an · · · a2 a1 ; the transpose of a
pair (u, v) is the pair (tu, tv). The transpose of an automaton, or of a transducer,
A = 〈 Q, I, E, T 〉, is the automaton, or the transducer, tA = 〈 Q, T, tE, I 〉, avec

tE =
{
(p, tx, q)

∣∣ (q, x, p) ∈ E
}

.

A word w is accepted by A in a right-to-left reading if and only if tw is accepted
by tA in a left-to-right reading. A word v belongs to the image of a word u in the
relation realised by a transducer A in a right-to-left reading if and only if tv belongs
to the image of tv par tA in a left-to-right reading.

In this way, it is seen that the inversion of the reading direction does not change
the power of the model and does not bring anything new (as far as we have the
transposition operator at hand). In some cases however, it may be simpler, more
convenient or natural, to consider transducers that read from right to left, for instance
when the transposed transducer is input deterministic as in Example 14 (what is
called right sequential transducer in the last lecture).

Example 14. Addition in base 2. Let A2 = {0, 1}. The map which associates
with every pair (u, v) of words of A2×A2, that are the binary representations of the
integers u and v, the binary representation of u + v is realised by the transducer of
Figure 8 when it reads pairs from right to left (which is the usual way to perform
addition indeed) and with the convention that the two words u and v are justified
on the right and that the shorter one is padded with a sufficient number of ‘0’ on the
left to be of the same length as the longer one and, finally, that a last ‘0’ is added
on the left to both words in order to allow a last transition toward the final state (if
necessary).

Work in Progress – 82 – 21 January 2019

Lecture notes Weighted Automata and Transducers

(1, 0, 0), (0, 1, 0), (1, 1, 1) (0, 0, 0), (1, 0, 1), (0, 1, 1)

(0, 0, 1)

(1, 1, 0)

Figure 8: A 3-ary right transducer for the binary addition

2.4 Transducers as machines

Modelling a finite Boolean automaton as a ‘1-way Turing machine’ leads naturally
to a generalisation of the model that features ‘several tapes’. The machine consists
of a finite state control unit and several tapes. The control unit is connected to
every tape by a reading head (cf. Figure 9).

At every step of the computation, the control unit ‘chooses’, according to its
state p, a tape on which it ‘reads’ and, depending on the symbol a read on the
tape, jumps in state q and moves the reading head on that tape to the next cell on
the right.4 As reading heads are moved always in the same direction, this type of
mahine is called 1-way Turing machine.

At the beginning of a computation, a word is written on each of the k tapes,
every reading head stays on the first cell of its tape and the control unit is in a
distinguished state called initial. After a succession of steps, a computation ends
if every reading head has reached on its tape the cell that contains the end-of-tape
symbol. The computation is successful if at the end of the computation the control
unit is in a state called final. A k-tuple of words is accepted by the machine if it
can be read by a successful computation.

p

Control unit

State

a1 a2 a3 a4 an $

b1 b2 b3 b4 bm $

k1 k2 k3 k4 kl $
Direction of movement of the k read heads

Figure 9: A k-tape 1-way Turing machine

Finite transducers over A∗×B∗ are strongly equivalent to 1-way 2-tape Turing
4Other computation rules for such a device are possible. For instance, the choice of the read

tape and of the destination state may depend not only on the state p but also on the symbols read
on all tapes. All such definitions prove to be indeed equivalent.

Not to be circulated – 83 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

machines (1W2TTM) in the sense that for every transducer one can build such a
machine which is not only equivalent (that is, accepts the same pair of words) but
such that there is a bijection between their successful computations and vice versa.
The generalisation to transducers over A∗

1×A∗
2×· · ·×A∗

k and to 1-way k-tape Turing
machines is tedious but conceals no difficulties.

3 Some facts

We review a series of negative results concerning rational sets of direct products of
free monoids, hence rational relations. We end with an essential positive result that
will be developped in Section 5: the closure by composition of rational relations. In
the sequel, we call the finite transducers simply transducers.

3.1 Intersection, complement

In contrast with rational languages, rational relations are not closed under intersec-
tion and hence under complement.

Fact 15. R, S ∈ Rat A∗×B∗ �=⇒ R ∩ S ∈ Rat A∗×B∗ .

Example 16. The behaviours of transducers5 of Figure 10 are:

V1 = {(anbm, cn) | n, m ∈ N} and W1 = {(anbm, cm) | n, m ∈ N} .

Hence V1 ∩ W1 = {(anbn, cn) | n ∈ N} �∈ Rat {a, b}∗×{c}∗

since Dom (V1 ∩ W1) = {anbn | n ∈ N} �∈ Rat {a, b}∗ .

b |1

a |c b |1

︸ ︷︷ ︸
V1

b |c

a |1 b |c

︸ ︷︷ ︸
W1

Figure 10: Transducers V1 and W1 over {a, b}∗×{c}∗

Corollary 17. Rat A∗×B∗ is not closed under complement.

It holds nevertheless:

Proposition 18. The complement of the identity is a rational relation.

The proof reduces to the construction of the transducer of Figure 11 (and to the
verification that its behaviour is indeed the complement of the identity).

5From this example on, we write a | b instead of (a, b) for the labels of transitions, in order to
lighten notation.

Work in Progress – 84 – 21 January 2019

Lecture notes Weighted Automata and Transducers

a |b
b |a

A |11 |A

A |11 |A

a |a, b |b

A |A

A |11 |A

Figure 11: A transducer for the complement of the identity

3.2 Equivalence

A fundamental property of finite automata over a free monoid is that their equival-
ence is decidable, that is, there exists an algorithm which computes whether two
such automata accept the same language. This property does not extend to rational
relations.

Theorem 19 (Rabin & Scott 1959). Let R, S ∈ Rat A∗×B∗ , ‖A‖, ‖B‖ � 2 .
It is undecidable whether R ∩ S = ∅ or not.

It follows:

Theorem 20 (Fischer & Rozenberg 1968).
The equivalence of finite transducers is undecidable.

These two negative results are established in the next section. Their statements
leave open the status of the same questions in the cases where ‖A‖ � 2, ‖B‖ = 1
on one hand-side and ‖A‖ = ‖B‖ = 1 on the other. The first case exhibits an
interesting separation between the two above statements.

Theorem 21 (Gibbons & Rytter 1986).
Let R, S ∈ Rat {a, b}∗×{c}∗ . It is decidable whether R ∩ S = ∅ or not.

Theorem 22 (Ibarra 1978 – Lisovik 1979).
The equivalence of finite transducers over {a, b}∗×{c}∗ is undecidable.

The second case pertains to a completely different theory. It is noticed that
{a}∗×{b}∗ is isomorphic to N2, the free commutative monoid with two generators.
And it holds:

Theorem 23 (Ginsburg & Spanier 1966).
RatNk is an effective Boolean algebra, for every integer k.

The proof of these last three results exceeds the program of these lectures
(cf. EAT). We end this negative list with a positive result, not so much for cheering
up, but because we need it in the next section for the proof of undecidability results.

Not to be circulated – 85 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

3.3 Composition

The composition of functions directly extends to the one of (2-ary) relations.

Definition 24. Let θ : A∗ → B∗ et σ : B∗ → C∗ two relations. The composition
of θ and σ is the relation

σ ◦ θ : A∗ → C∗ defined by ∀u ∈ A∗ [σ ◦ θ](u) = σ(θ(u)) .

The composition of relations can be defined (or expressed) by means of their graph:

σ̂ ◦ θ =
{

(u, w) ∈ A∗×C∗
∣∣∣ ∃v ∈ B∗ (u, v) ∈ θ̂ and (v, w) ∈ σ̂

}
.

Theorem 25 (Elgot & Mezei 1965).
The composition of two rational relations is a rational relation.

We come back to, and establish, this fundamental result in Section 5.

Remark 26. In contrast with most of the other notions, composition of 2-ary re-
lations does not generalise in a straightforward manner: one has to specify which
component(s) of the first relation are considered to be the ‘result’ and these com-
ponents have to be the ‘input’ of the seconde relation. And Theorem 25 generalises
if the result is a word only, that is, if there is only one component in the result.

For instance, if θ is a rational relation over A∗×B∗×C∗ and σ a rational relation
over C∗ ×D∗, that is, θ is seen as θ : A∗ ×B∗ → C∗ and σ as σ : C∗ → D∗ , then
σ ◦ θ is a rational relation. But if π is a rational relation over B∗ ×C∗ ×D∗ seen
as π : B∗ ×C∗ → D∗ and θ is seen as θ : A∗ → B∗ ×C∗ , then π ◦ θ is a relation
over A∗×D∗ which is not necessarily a rational relation.

4 Undecidability results

The undecidable property par excellence is the ‘halting problem for a Turing ma-
chine’. But one can take as a basis any other propery already proved to be undecid-
able. The one we shall use in the sequel, because it is simpler to state, and easier
to deal with in connection with automata, is known as the ‘Post Correspondence
Problem’.

The Post Correspondence Problem (PCP)
Let B be an alphabet with at least two letters. Given an integer k and two sets

of k words of B∗: {u1, u2, . . . , uk} et {v1, v2, . . . , vk} , does there exist a sequence
of indices i1, . . . , ip in [k] such that

ui1ui2 · · · uip = vi1vi2 · · · vip ?

Theorem 27 (Post 1946). (PCP) is recursively undecidable.

Work in Progress – 86 – 21 January 2019

Lecture notes Weighted Automata and Transducers

This statement holds for the problem in full generality. If one looks for its status
according to the number k that allows to formulate an instance, the situation is
more complex. Let (PCPk) be the above problem in which the integer k is fixed. It
is known that (PCP2) is decidable and, since recently, that (PCPk) is undecidable
for k � 5 . The status of (PCPk) is still open for k equal to 3 or 4.

Translation in the vocabulary of Language and Automata Theory
The reason for our choice is that (PCP) can be easily expressed in terms of

morphisms between free monoids.
If U = {u1, u2, . . . , uk} is given, we write: Ak = {1, 2, . . . , k} , and

τU : A∗
k → B∗ for the morphism defined by τU (i) = ui for every i in [k] .

Similarly, if V = {v1, v2, . . . , vk} , we write: τV : A∗
k → B∗ the morphism defined

by τV (i) = vi for every i in [k]. A ‘sequence of indices’ is a word of A∗
k and (PCP)

is rephrased into:
does there exist a word w in A∗

k such that τU (w) = τV (w) ?
Theorem 27 then becomes:

Theorem 28. Let θ and µ : A∗ → B∗ be two morphisms.
It is undecidable whether there exists w in A∗ such that θ(w) = µ(w) or not.

Proof of Theorem 19. Let U and V be two sets of k words of B∗ which produce an
undecidable instance of (PCP) and τU : A∗

k → B∗ and τV : A∗
k → B∗ the corres-

ponding morphisms.
To state that it is undecidable whether there exists w in A∗

k such that τU (w) =
τV (w) is equivalent as to state that it is undecidable whether

τ̂U

⋂
τ̂V = ∅ ,

and τU and τU are rational relations (Example 2(ii)). It remains to show that
Theorem 19 holds for an alphabet A = {a, b} with two letters only.

Let κ : A∗
k → A∗ an injective morphism (defined, for instance, by κ(i) = aib).

By Theorem 25, τU ◦ κ−1 and τV ◦ κ−1 are rational relations and, since κ is injective,
it holds:

̂τU ◦ κ−1
⋂

̂τV ◦ κ−1 = ∅ ⇐⇒ τ̂U

⋂
τ̂V = ∅ .

Theorem 20 is a direct consequence of the following, more precise, statement.

Theorem 29. Let R ∈ Rat A∗×B∗ , ‖A‖, ‖B‖ ≥ 2 .
It is undecidable whether R = A∗×B∗ or not.

We first prove:

Not to be circulated – 87 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Lemma 30. Let θ : A∗ → B∗ be a functional rational relation. Then �θ : A∗ → B∗

is a rational relation.

Proof. Let χ be the complement of the identity on B∗, a rational relation by Pro-
position 18. We have:

�̂θ = [(A∗ \ Dom θ)×B∗] ∪ χ̂ ◦ θ .

The first term of the union is rational (Example 2(i)) and so is the second one by
Theorem 25.

Proof of Theorem 29. With the notation of the proof of Theorem 19, τU ◦ κ−1

and τV ◦ κ−1 are functional rational relations and it holds:

�
(

̂τU ◦ κ−1
) ⋃

�
(

̂τV ◦ κ−1
)

= A∗×B∗ ⇐⇒ ̂τU ◦ κ−1
⋂

̂τV ◦ κ−1 = ∅ .

5 Composition and evaluation

The closure by composition of rational relations (Theorem 25) is a fundamental
property, as is the consequence we deduce from it: the Evaluation Theorem (The-
orem 35).6 Together, they make of rational relations a powerful tool for the classi-
fication of formal languages. But above all, they give its consistency to the model
of transducers.

5.1 The Composition Theorem

Theorem 25 (Elgot & Mezei 1965).
θ : A∗ → B∗ , σ : B∗ → C∗ rat. rel. =⇒ σ ◦ θ : A∗ → C∗ rat. rel.

Proof. Let T = 〈 A∗×B∗, Q I, E, T 〉 and S = 〈 B∗×C∗, R, J, F, U 〉 be two
subnormalised transducers which realise θ and σ respectively. We define a composi-
tion product of transducers U = S ◦ T by:

U = 〈 A∗×C∗, Q×R, I×J, G, T ×U 〉 with

G =
{

(p, r) x|y−−−→ (q, s)
∣∣∣∣ ∃b ∈ B , ∃p

x|b−−−→ q ∈ E , ∃r
b|y−−−→ s ∈ F x ∈ A ∪ 1 , y ∈ C ∪ 1

}
⋃ {

(p, r) a|1−−−→ (q, r)
∣∣∣∣ ∃p

a|1−−−→ q ∈ E ∀r ∈ R

}
⋃ {

(p, r) 1|c−−−→ (p, s)
∣∣∣∣ ∃r

1|c−−−→ s ∈ F ∀p ∈ Q

}
.

6In the next lecture, we proceed in the reverse way: we first establish the Evaluation Theorem
from wich we deduce the Composition Theorem.

Work in Progress – 88 – 21 January 2019

Lecture notes Weighted Automata and Transducers

By induction on the length of the computation, it is verified that:

(p, r) u|w−−−→
U

(q, s) if and only if ∃v p
u|v−−−→
T

q and r
v|w−−−→
S

s ,

which establish U = σ̂ ◦ θ.

This composition product may yield a transducer U with some transitions that
are labelled by 1 |1 (in the first group of transitions of G, when x and y are both
equal to 1). These spontaneous transitions are eliminated (by ‘backward’ or ‘forward’
closure, for instance) in order to obtain a subnormalised transducer. In the sequel,
it will be this7 subnormalised transducer which will be denoted by U = S ◦ T .

Example 31 (trivial).

U1 = S1 ◦ T1

a |b

T1

b |c

S1

a |c

U1

Example 32 (less trivial but still simple).

U2 = S2 ◦ T2

T2
a |a

a |b

b |b

b |b

S2

b |b

b |a

a |a a |a

U2

b |b

b |a

b |b

b |a

a |a a |a
a |b a |a

These two examples show ‘letter-to-letter transducers’. More general examples
will be considered in the exercises.

Remark 33. If we consider the normalised transducers T3 and S3 that are equivalent
to T1 and S1 respectively, a spontaneous transition appears in the course of the
construction of the composition product U3 = S3 ◦ T3. It is also important to note
that in this case also, the multiplicity of computations is not preserved. A more
elaborate construction (that is, a more sophisticated composition product) allows
us to overcome this problem.

7A slight abuse, as S ◦ T is not completely determined since we have left the choice open for the
closure.

Not to be circulated – 89 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

U3 = S3 ◦ T3

T3
a |1

1 |b

S3
b |1

1 |c
1 |c

1 |c

a |1 a |11 |1 U3
1 |c

1 |c

a |1
a |1

Remark 34. It is possible to define (finite) transducers on direct products of non
free monoids and hence rational relations between non necessarily free monoids:
relations from M to N whose graph is in Rat M ×N .

Two such relations θ : M → N and σ : N → P can be then be composed. The
construction of the proof of Theorem 25 still holds true — and the composition is a
rational relation — as long as N is a free monoid B∗, but the composition may well
be a non rational relation if N is not a free monoid.

For instance, let θ : {a}∗ → a∗ ×b∗ be the morphism defined by θ(a) = (a, b)
and σ : a∗ × b∗ → {a, b}∗ the relation whose graph is σ̂ =

(
(a, 1), a

)∗((1, b), b
)∗ .

Then σ((an, bm)) = anbm holds and Im (σ ◦ θ) = {anbn | n ∈ N} . It follows that
σ ◦ θ : {a}∗ → {a, b}∗ is not a rational relation.

5.2 Two consequences

From Theorem 25 we deduce two important results: the Evaluation Theorem, and
a ‘restriction theorem’.

Theorem 35.
The image of a rational language by a rational relation is a rational language.

Proof. We want to prove: θ : A∗ → B∗ rational relation and K in Rat A∗ imply
that θ(K) is in Rat B∗. The following sequence of equalities holds.

θ(K) =
⋃

v∈K

θ(v) =
⋃

v∈K

{
w ∈ B∗

∣∣∣ (v, w) ∈ θ̂
}

=
{

w ∈ B∗
∣∣∣ ∃v ∈ K (v, w) ∈ θ̂

}
=

{
w ∈ B∗

∣∣∣ ∃u ∈ A∗ , ∃v ∈ K (u, v) ∈ ι̂ and (v, w) ∈ θ̂
}

= Im (θ ◦ ι)

This result can be seen as a particular case of the following statement which
contrasts with Fact 15.

Theorem 36. Let θ : A∗ → B∗ be a rational relation, K a rational language of A∗

and L a rational language of B∗. Then θ̂∩(K×L) is the graph of a rational relation.

Work in Progress – 90 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Proof. It is easily verified that θ̂ ∩ (K×L) = ̂ιL ◦ θ ◦ ιK .

Remark 37. Theorem 36 can also be seen as a particular instance of a general result
on rational and recognisable subsets of non free monoids: the intersection of a rational
and of a recognisable subsets of an arbitrary monoid is a rational subset and K×L

is a recognisable subset of A∗×B∗.

6 Exercises

1. Orders. The alphabet A is totally ordered and this order is denoted by �.

The lexicographic order, denoted by �, extends the order on A to an order on A∗ and is
defined as follows. Let v and w be two words in A∗ and u their longest common prefix.
Then, v � w if v = u or, if v = uas, w = ub t with a and b in A, then a < b.

(a) Give a finite transducer over A∗×A∗ which realises �, that is, which asssociates with
every word u of A∗ the set of words which are equal to or greater than u.

The radix order (also called the genealogical order or the short-lex order), denoted by �, is
defined as follows: v � w if |v| < |w| or |v| = |w| and v � w.

(b) Give a finite transducer over A∗×A∗ which realises �,

For every language L of A∗, we denote by minlg (L) (resp. Maxlg (L)) the set of words of L

which have no smaller (resp. no greater) words in L of the same length in the lexicographic
order.

(c) Show that if L is a rational language, so are minlg (L) and Maxlg (L).

2. Number representation.

Let A2 = {0, 1} and A3 = {0, 1, 2} be two alphabets of digits.

The alphabet A3 can be first considered as a non-canonical alphabet for the representation
of integers in base 2: 12 = 4, 201 = 9, etc.

Let ν2 : A∗
3 → A∗

2 be the normalisation in base 2, that is, the relation which associates with
a word of A∗

3 the word of A∗
2 which represents the same integer in base 2.

(a) Give a transducer which realises ν2. Comment.

Let ϕ : A∗
2 → A∗

3 be the function which maps the binary representation of every integer
onto its representation in base 3, e.g. ϕ(1000) = 22.

(b) Show that ϕ is not a rational relation.

3. Operation on numbers.

(a) Give a transducer which realises the multiplication by 9 on the integers written in
binary representation, that is, the relation τ : A∗

2 → A∗
2 such that τ(w) = 9 · w.

Not to be circulated – 91 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

(b) Let µ : A∗
2 ×A∗

2 → A∗
2 be the relation which realises the multiplication, that is, such

that µ(u, v) = w where w = u · v .
Show that µ is not a rational relation.

4. Map equivalence of a morphism.

Let ϕ1 : {a, b, c}∗ → {x, y}∗ be the morphism defined by:

ϕ1(a) = x , ϕ1(b) = y x , ϕ1(c) = xy .

(a) Give a subnormalised transducer which realises ϕ1.

(b) Give a subnormalised transducer which realises ϕ1
−1.

(c) Compute a subnormalised transducer which realises ϕ1
−1 ◦ ϕ1.

5. Iteration Lemma. Let θ : A∗ → B∗ be a rational relation.

(a) Show that there exists an integer N such that for every pair (u, v) in θ̂ whose length8

is greater than N , there exists a factorisation:

(u, v) = (s, t) (x, y) (w, z)

such that: (i) 1 � |x| + |y| � N and (ii) (u, v) = (s, t) (x, y)∗(w, z) ⊆ θ̂ .

(b) Show that the mirror function ρ : A∗ → A∗ :

ρ(a1 a2 · · · an) = an an−1 · · · a1 ,

is not a rational relation.
[Hint: Let K = a∗b∗, L = b∗a∗. Consider the relation π = ιL ◦ ρ ◦ ιK and apply the
Iteration Lemma to a pair (aN bN , bNaN).]

6. Conjugacy. Let Conj : A∗ → A∗ be the relation which associates with every word w

the set of its conjugates: Conj(w) = {v u | u, v ∈ A∗ uv = w} .

(a) Show that if L is a rational language, then so is Conj(L).

(b) Give a transducer which associates with every word w of {a, b}∗ the word obtained by
moving the first letter of w to its end.

(c) Compose this transducer with itself.

(d) Show that Conj is not a rational relation.

8The length of a pair is the sum of the lengths of its components.

Work in Progress – 92 – 21 January 2019

Lecture V

Transducers (2)
Realisation by representations

In this lecture, we start again the study of transducers, this time by means of their
realisation by representations. To that end, one term of the direct product plays a
particular role and this yields an almost new computation model which proves to be
more natural and apt to many specialisations.

After a new presentation of the Composition Theorem in this other frame-
work, the remaining of the lecture presents such specialisations. We first present
the rational uniformisation property which is obtained by the construction of the
Schützenberger immersions applied to the ‘real-time’ transducers model. We then
sketch the properties of functional rational relations.

Contents
1 Real-time transducers and representations 94

1.1 Definitions . 94
1.2 Realisation of rational relations 95
1.3 Representations of rational relations 97

2 Composition and evaluation theorems 98
2.1 Evaluation Theorem . 98
2.2 Composition of representations 99

3 Uniformisation of rational relations 101
3.1 Uniformisation of a relation 102
3.2 The Rational Uniformisation Theorem 103

4 Rational and sequential functions 104
4.1 Rational functions . 104
4.2 Sequential functions . 105

5 Exercises . 105

93

2.16 – Finite automata based computation models MPRI 2018/2019

1 Real-time transducers and representations

We define a new model of transducers, which leads then naturally to a matrix
representation of automata that realise rational relations.

1.1 Definitions

The definition of real-time transducers we have in mind requires first a slight shift
of Definition IV.1 of transducers towards the one of weighted automata, with the
transformation of the notion of initial and final states into the one of initial and final
functions. In a Boolean automaton A = 〈 A, Q, I, E, T 〉, the subsets I ⊆ Q and
T ⊆ Q are transformed into the functions I : Q → P (A∗) and T : Q → P (A∗)
defined by:

I(q) =

 1A∗ if q is an initial state
∅ otherwise ,

T (p) =

 1A∗ if p is a final state
∅ otherwise .

The definition of the label of a computation is changed accordingly so that the
language accepted by the automaton, its behaviour, stays unchanged.

Definition 1. A real-time transducer1 on A∗×B∗, T = 〈 A∗×B∗, Q, I, E, T 〉 , is an
automaton the transitions of which are labelled by elements of A×P (B∗) and with
initial and final functions with values in P (B∗) , that is, E ⊆ Q×A×P (B∗)×Q

and I, T : Q → P (B∗) .
The transducer T is said to be finite if E is finite, if every transition is labelled

in A×Rat B∗ and if I and T are with values in Rat B∗.

Example 2. Figure 1 shows three real-time transducers.

1 |a 1 |ab

a |1

b |1

a |ab

b |b a |a b |ba

(a)

a |a+

b |b+

(b) G1

1 |A+ 1 |A∗

a |b , b |a

A |1

a |a, b |b A |1

A |1

(c)

Figure 1: Three real-time transducers

More generally, the transitions of T are thus of the form:

p
a|Ka,p,q−−−−−−→

T
q with a ∈ A , Ka,p,q ⊆ B∗ ,

1In French: transducteur “temps-réel”, a terminology that is not completely satisfactory but that
I use for lack of a better translation.

Work in Progress – 94 – 21 January 2019

Lecture notes Weighted Automata and Transducers

from which we deduce the form of the computations of T :

c = I(p0)−→ p0
a1|Ka1,p0,p1−−−−−−−−−→ p1

a2|Ka2,p1,p2−−−−−−−−−→ p2 · · · pn−1
an|Kan,pn−1,pn−−−−−−−−−−−→ pn

T (pn)−→ ,

and the one of their label:

c = (1A∗ , I(p0)) (a1, Ka1,p0,p1) (a2, Ka2,p1,p2) · · · (an, Kan,pn−1,pn) (1A∗ , T (pn)) .

The relation θ : A∗ → B∗ realised by T is thus, for every w = a1a2 · · · an in A∗:

θ(w) =
⋃

c calcul de T
πA∗(c)=w

I(p0)Ka1,p0,p1 Ka2,p1,p2 · · · Kan,pn−1,pn T (pn) .

1.2 Realisation of rational relations

Theorem 3. A relation θ : A∗ → B∗ is rational if and only if it is realised by a
finite real-time transducer.

Proof. (i) The condition is sufficient. Let T be a finite real-time transducer. If K

is a rational language of B∗ accepted by A (Figure 2(a)), a transition p
a|K−−−→ q of T

(Figure 2(b)) is replaced by a set of labelled transitions (Figure 2(c)), the initial
and final functions I(q) = K and T (p) = K by two sets of labelled transitions
(Figure 2(d) and(e)).

The transducer we obtain in this way is easily seen to be equivalent to the
tranducer T we started from. This construction yields spontaneous transitions which
are then eliminated by the classical algorithm and the result is then a normalised
transducer, still equivalent to T . Figure 3 shows this construction applied to the
transducer G1 of Figure 1(b).

b

A

(a)

p q
a |K

(b)

p q
a |1 1 |b

A′′

1 |b

1 |b

1 |1

1 |1

(c)

q
1 |b

A′′

1 |1

1 |1

(d)

p
1 |b

A′′

1 |1

1 |1

(e)

Figure 2: Transforming a real-time transducer into a normalised transducer

(ii) The condition is necessary. Let θ : A∗ → B∗ be a rational relation and T a
subnormalised transducer which realises θ̂. The transducer T is written under the

Not to be circulated – 95 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

matrix form: T = 〈 I, E, T 〉 where I and T are Boolean vectors of dimension Q

and where E is a matrix of dimension Q×Q the entries of which are subsets of
(A×{1B∗ }) ∪ ({1A∗}×B) — if T is normalised — or

of (A×{1B∗}) ∪ ({1A∗}×B) ∪ (A×B) — if T is subnormalised. In any case,

θ̂ = T = I · E∗ · T (1.1)

holds. In any case also, we can write

E = F + G with G ∈ ({1A∗}×B)Q×Q

and F ∈ (A×{1B∗ })Q×Q or F ∈
(

(A×{1B∗ }) ∪ (A×B)
)Q×Q

according to whether T is normalised or subnormalised. Equation (1.1) reads then:

T = I · E∗ · T = I · (F + G)∗ · T = I · (G∗ · F)∗ · G∗ · T = I · G∗ · (F · G∗)∗ · T .

This shows that T is equivalent to the two transducers T ′ and T ′′ with:

T ′ = 〈 I, G∗ · F, G∗ · T 〉 and T ′′ = 〈 I · G∗, F · G∗, T 〉 .

The entries of G∗ belong to (1A∗×Rat B∗), and those of F ·G∗ belong to (A×Rat B∗):
T ′ and T ′′ are two finite real-time transducers. Example 4 gives these computations
for the transducer G2.

a |a+b |b+

(a) G1

a |1b |1

1 |a1 |b
1 |11 |1 1 |a1 |b

(b) after construction

a |1b |1

1 |a1 |b

1 |a1 |b

(c) G2, after closure (and quotient)

Figure 3: A real-time transducer transformed into a normalised transducer

Example 4. The matrix representation of G2 is:

I2 =
(
1 0 0

)
, E2 =

 0 (a, 1) (b, 1)
(1, a) (1, a) 0
(1, b) 0 (1, b)

 , T2 =

0
0
1

 ,

from which we compute:

F2 =

0 (a, 1) (b, 1)
0 0 0
0 0 0

 , G2 =

 0 0 0
(1, a) (1, a) 0
(1, b) 0 (1, b)

 , G∗
2 =

 (1, 1) 0 0
(1, a+) (1, a∗) 0
(1, b+) 0 (1, b∗)

 .

The transducer G′
2 = 〈 I2, G∗

2 · F2, G∗
2 · T2 〉 is shown at Figure 4 and it is easily seen

that G′′
2 = 〈 I2 · G∗

2, F2 · G∗
2, T2 〉 is equal to G1.

Work in Progress – 96 – 21 January 2019

Lecture notes Weighted Automata and Transducers

1 |a+1 |b+

a |1b |1

b |a+

a |b+

a |a+b |b+

Figure 4: The real-time transducer G′
2

1.3 Representations of rational relations

Definition 5. Let A∗ and B∗ be two free monoids. A representation of A∗ into
Rat B∗ of dimension Q is a triple 〈 I, µ, T 〉 where µ : A∗ → (Rat B∗)Q×Q is a
morphism (hence entirely defined by the matrices µ(a) for a in A), and where I

and T are respectively row and column vectors in (Rat B∗)Q.

Theorem 6. A relation θ : A∗ → B∗ is rational if and only if there exists a repre-
sentation 〈 I, µ, T 〉 of A∗ into Rat B∗ which realises θ, that is, such that

∀w ∈ A∗ θ(w) = I · µ(w) · T .

Proof. If T = 〈 I, E, T 〉 is a real-time transducer, the matrix E defines the morph-
ism µ : A∗ → (Rat B∗)Q×Q by

E =
∑
a∈A

(a, 1)(1, µ(a)) (1.2)

that is,

∀a ∈ A , ∀p, q ∈ Q µ(a)p,q =

 Ka,p,q if p
a|Ka,p,q−−−−−−→

T
q

∅ otherwise ,

under the hypothesis, necessary for the writing T = 〈 I, E, T 〉 , that for every a in A

and every pair p, q in Q, there exists at most one transition in T which goes from p

to q and whose first component is a.
Conversely, a morphism µ : A∗ → (Rat B∗)Q×Q defines, via the same Equa-

tion (1.2), the adjacency matrix of a finite real-time transducer. By induction on
the length of the words w, it is then checked that:

∀w ∈ A∗ , ∀p, q ∈ Q µ(w)p,q = L ⇐⇒ L =
⋃{

H

∣∣∣∣ p
w|H−−−−→

T
q

}
from which it follows that, for every w in A∗, θ(w) = I · µ(w) · T .

Example 7. The representations of the real-time transducers of Example 4 are the
following:

(a) I =
(
1 0 0

)
, µ(a) =

0 1 0
0 a 0
0 ab 0

 , µ(b) =

b 0 0
0 0 1
0 ba 0

 , T =

 1
a

ab

 ;

Not to be circulated – 97 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

(b) I =
(
1
)

, µ(a) =
(
a+

)
, µ(b) =

(
b+

)
, T =

(
1
)

;

(c) I =
(
1 0 0

)
, µ(a) =

a b 1
0 1 0
0 0 1

 , µ(b) =

b a 1
0 1 0
0 0 1

 , T =

A+

A∗

1

 .

2 Composition and evaluation theorems

The realisation of rational relations by representations allows us to state a new
composition theorem. The result in itself is not new, since we proved it already in
Lecture IV: the composition of two rational relations is a rational relation (The-
orem IV.25). But, at the same time, what we present here is more than a new proof.
This result is indeed now the consequence of another result: the composition of two
representations is a representation, which is new.

The idea is to generalise the composition of morphisms between free monoids
to representations. In Lecture IV, we had deduce the ‘evaluation theorem’ from
the closure under composition of rational relations. We now proceed the other way
around and establish the evaluation theorem first.

2.1 Evaluation Theorem

In the sequel of the section, 〈 I, µ, T 〉 is a representation of A∗ into Rat B∗ of
dimension Q, that is:

µ : A∗ → (Rat B∗)Q×Q is a morphism , I ∈ (Rat B∗)1×Q and T ∈ (Rat B∗)Q×1 .

Recall that any application extends additively, that is, if K ⊆ A∗ , then:

µ(K) =
∑

w∈K

µ(w) that is, ∀p, q ∈ Q µ(K)p,q =
⋃

w∈K

µ(w)p,q .

Proposition 8. If µ : A∗ → (Rat B∗)Q×Q is a morphism, then

K ∈ Rat A∗ =⇒ µ(K) ∈ (Rat B∗)Q×Q ,

that is, for every p and q in Q, µ(K)p,q belongs to Rat B∗ .

From which follows:

Corollary 9. If θ : A∗ → B∗ is a rational relation, then

K ∈ Rat A∗ =⇒ θ(K) ∈ Rat B∗ .

Work in Progress – 98 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Proof. If θ is a rational relation, then θ is realised by a representation 〈 I, µ, T 〉 and

θ(K) =
⋃

w∈K

θ(w) =
⋃

w∈K

I · µ(w) · T = I ·
(⋃

w∈K

µ(w)
)

· T = I · µ(K) · T .

Proof of Proposition 8. (i) Let us recall first the theorem (see proof of Proposi-
tion I.17):

Theorem 10. Let M be a monoid and E a matrix of dimension Q×Q, the entries
of which are in P (M). Then, the entries of E∗ belong to the rational closure of the
entries of E.

(ii) Preparation. We check successively the ‘closure’ by union, product, and star.
First, the union:

µ(K) , µ(L) ∈ (Rat B∗)Q×Q =⇒ µ(K ∪ L) ∈ (Rat B∗)Q×Q (2.1)

since, for every p and q in Q, µ(K ∪ L)p,q = µ(K)p,q∪µ(L)p,q . Second, the product:

µ(K) , µ(L) ∈ (Rat B∗)Q×Q =⇒ µ(K L) ∈ (Rat B∗)Q×Q (2.2)

since, on the one hand:

µ(K L) =
⋃

{µ(w) | w ∈ K L} =
⋃

{µ(uv) | u ∈ K , v ∈ L}

=
⋃

{µ(u) µ(v) | u ∈ K , v ∈ L}

=
(⋃

{µ(u) | u ∈ K}
) (⋃

{µ(v) | v ∈ L}
)

= µ(K) µ(L) ,

and, on the other, (Rat B∗)Q×Q is closed by product since Rat B∗ is a semiring. And,
finally:

µ(K) ∈ (Rat B∗)Q×Q =⇒ µ(K∗) ∈ (Rat B∗)Q×Q (2.3)

since, by (2.1) and (2.2)

µ(K∗) = µ

 ⋃
n∈N

Kn

 =
⋃

n∈N

µ(Kn) =
⋃

n∈N

(
µ(K)

)n =
(
µ(K)

)∗ ,

and Theorem 10 applies.
(iii) Proposition 8 is the consequence of the three equations (2.1), (2.2) and (2.3),

by induction on the depth of a rational expression which denotes K.

2.2 Composition of representations

Definition 11. Let µ : A∗ → (Rat B∗)Q×Q and ν : B∗ → (Rat C∗)R×R be
two morphisms. The composition of µ by ν is the map π = ν ◦ µ from A∗

to (Rat C∗)(Q×R)×(Q×R) , defined by the block decomposition:

∀w ∈ A∗ π(w)p×R,q×R = ν
(
µ(w)p,q

)
.

Not to be circulated – 99 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

Remark that this definition is built upon Proposition 8 in the sense that the
entries of π(w) are a priori in P (A∗) and it is the proposition that insures that they
are in Rat C∗.

Examples 12. (i) Definition 11 coincides with the definition of monoid morph-
isms composition, in the case where µ and ν are such morphisms.

(ii) If µ1(a) =
(

0 a

b 0

)
, µ1(b) =

(
b 0
0 b

)
and ν1(a) =

(
a 0
0 a

)
, ν1(b) =

(
0 b

a 0

)
,

then:

π1(a) =


0 0 a 0
0 0 0 a

0 b 0 0
a 0 0 0

 and π1(b) =


0 b 0 0
a 0 0 0
0 0 0 b

0 0 a 0

 .

Definition 11 is legitimate thanks to the following proposition:

Proposition 13. π = ν ◦ µ : A∗ → (Rat C∗)(Q×R)×(Q×R) is a morphism.

Proof. We want to prove that, for every u and v in A∗, it holds:

[ν ◦ µ](uv) = [ν ◦ µ](u) [ν ◦ µ](v) .

For every p and q in Q, it holds:

([ν ◦ µ](uv))p×R,q×R = ν
(
µ(uv)p,q

)
= ν

∑
r∈Q

(
µ(u)p,r µ(v)r,q

)
=

∑
r∈Q

ν
(
µ(u)p,r µ(v)r,q

)
=

∑
r∈Q

(
ν
(
µ(u)p,r

)
ν
(
µ(v)r,q

))
=

∑
r∈Q

([ν ◦ µ](u)p×R,r×R [ν ◦ µ](v)r×R,q×R)

= ([ν ◦ µ](u) · [ν ◦ µ](v))r×R,q×R .

Theorem 14. Let θ : A∗ → B∗ and σ : B∗ → C∗ be two rational relations, realised
by the representations 〈 I, µ, T 〉 and 〈 J, ν, U 〉 respectively. Then, σ ◦ θ : A∗ → C∗

is the rational relation realised by the representation 〈 K, π, V 〉, with:

π = ν ◦ µ , K = J · ν(I) and V = ν(T) · U .

Proof.

∀w ∈ A∗ [σ ◦ θ](w) = σ(θ(w)) = σ(I · µ(w) · T)
= J · ν(I · µ(w) · T) · U

= (J · ν(I)) · ν(µ(w)) · (ν(T) · U) .

Work in Progress – 100 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Theorem 14 yields a new method of composition of transducers, by means of the
sequence of transformations:

transducer � real-time transducer � representation �
composition of representations � real-time transducer � transducer.

Example 15. The morphism ϕ1 : {a, b, c}∗ → {x, y}∗ defined by:

ϕ1(a) = x , ϕ1(b) = y x , ϕ1(c) = xy .

is realised by the representation 〈 1, ϕ1, 1 〉. The relation ϕ1−1 : {x, y}∗ → {a, b, c}∗

is realised by the real-time transducer below:

y |bx |c

x |1y |1
x |a

and then by the representation 〈 J1, κ1, U1 〉 where:

J1 =
(
1 0 0

)
, κ1(x) =

a c 0
0 0 0
1 0 0

 , κ1(y) =

0 0 b

1 0 0
0 0 0

 and U1 =

1
0
0

 .

The relation ϕ−1
1 ◦ ϕ1 : A∗ → A∗ is realised by the representation

〈 J1, κ1, U1 〉 ◦ 〈 1, ϕ1, 1 〉 = 〈 J1, π1, U1 〉 with π1 = κ1 ◦ ϕ1 , that is: π1(a) = κ1(x) ,

π1(b) = κ1(y x) =

b 0 0
a c 0
0 0 0

 and π1(c) = κ1(xy) =

c 0 ab

0 0 0
0 0 b

 ,

which corresponds to the real-time transducer below.

c |aba |c

a |1b |a

c |bb |c

a |a, b |b , c |c

Figure 5: A transducer for ϕ−1
1 ◦ ϕ1

3 Uniformisation of rational relations

As a first illustration of the realisation of rational relations by representations, we
establish a Rational Uniformisation Theorem.

Not to be circulated – 101 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

3.1 Uniformisation of a relation

The notion of uniformisation of a relation (and the terminology) comes from lo-
gic (more precisely from descriptive set theory). In these notes, it will be only a
definition that allows us to state a result.

If θ is any relation, from a set E into another set F , a function τ from E

to F uniformises θ (or is a uniformisation of θ) if, for every e in the domain of θ ,
τ(e) is an element of θ(e) , that is:

Dom τ = Dom θ and ∀e ∈ Dom θ τ(e) ∈ θ(e) .

A uniformisation τ of a relation θ consists then in a choice function, a choice that
is repeated for every element of the domain of θ , in the selection of an element τ(e)
in each of the subsets θ(e) (cf. Figure 6).

Dom θ

θ(u)

τ̂

A∗u

B∗

τ(u)

θ̂

Figure 6: A uniformisation τ of a relation θ

Example 16. If θ is a relation from A∗ (from an arbitrary set E indeed) in a
free monoid B∗, the radix uniformisation2 is the function θrad which associates
with every element e of the domain of θ the smallest element, in the radix order,
of θ(e) .

Along the same lines, we can define the lexicographic selection θlex : it is the
function which associates with every element e of the domain of θ the smallest
element, in the lexicographic order, of θ(e) , if it exixts. As the lexicographic order
is not a well-order, this minimum element does not necessarily exist and θlex is not
always a uniformisation, that is, it is a function the domain of which may be strictly
contained in the one of θ.

2If radix order is called, a tempting option, military order (the oldest in the highest rank), we
then get a military uniformisation...

Work in Progress – 102 – 21 January 2019

Lecture notes Weighted Automata and Transducers

3.2 The Rational Uniformisation Theorem

After the definition of uniformisation, the problem consists in knowing whether it
is possible, when θ belongs to a certain family of relations, to define by selecting
for every e an element in θ(e), a uniformisation τ which belongs to that family of
relations, or to another given family of functions. The problem is solved for the
family of rational relations by the following result:

Theorem 17 (Eilenberg 1974). Every rational relation is uniformised by an unam-
biguous functional rational relation.

Before proving Theorem 17, let us complete the definition of its statement. A
rational relation θ : A∗ → B∗ is unambiguous if there exists a transducer T which
realises θ and such that every pair (u, v) in θ̂ = T is the label of exactly one
successful computation of T . A rational relation which is not unambiguous is called
inherently ambiguous.

Fact 18. There exist inherently ambiguous rational relatons.

Example 19. Let us take the behaviours of transducers V1 and W1 of Example IV.2:

V1 = {(anbm, cn) | n, m ∈ N} and W1 = {(anbm, cm) | n, m ∈ N} .

Then the rational relation V1 ∪ W1 is inherently ambiguous.

Proof of Theorem 17. Recall that if A is an automaton over A∗ and Â is its de-
terminisation, the accessible part S of Â×A is a covering of A , called the Schützen-
berger covering or S-covering of A , and that the projection πÂ of S onto Â is an
In-morphism. As a result, and by eliminating some transitions in S, we can construct
a sub-automaton T of S , called an S-immersion of A , which is unambiguous and
equivalent to A (see Corollary II.37).

Let C be a real-time transducer which realises a relation θ (corresponding to
a representation 〈 I, µ, T 〉 of θ), A its underlying input automaton, and T an S-
immersion in A. Since T is an immersion in A, each transition (r, a, s) of T
corresponds to a unique transition (p, a, q) in A and hence to a unique transition(

p, (a, µ(a)p,q), q
)

in C. If we choose, arbitrarily, a word w in µ(a)p,q , we construct
a transducer U by replacing every transition (r, a, s) in T by

(
r, (a, w), s

)
. Since T is

unambiguous, the relation τ realised by U is an unambiguous function, and since T
is equivalent to A it has the same domain as θ, and its graph is contained in that
of θ, by the choice of w.

Example 20. .— Let θ2 be the relation from {a, b}∗ into itself which replace in
every word one of its factor ab by the set b+a (and which is not defined on the
words that do not contain such a factor). Figure 7 shows a transducer E2 which
realises θ2 and whose underlying input automaton is A1 (on the left, verticaly), its

Not to be circulated – 103 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

determinisation Â1 (horizontaly, at the top) and a possible result of the construction
decribed in the proof above. �

p

q

r

a |b+a

b |1B∗

a |a b |b

a |a b |b

{p} {p, q} {p, r} {p, q, r}a b a

b

b a b a

a |a

a |ba

b |b

a |b2a

b |1B∗

a |b3a
a |b4a

b |1B∗

a |a

b |b

a |a

b |b a |a b |b a |a

b |b a |a

Figure 7: The transducer E2 and a S-uniformisation of θ2

Since the only possible uniformisation of a function is the function itself, The-
orem 17 implies the following statement (which contrasts with Fact 18).

Corollary 21.
Every functional rational relation is an unambiguous rational relation.

4 Rational and sequential functions

The realisation by representation yields handy criteria for defining or characterising
classes of rational relations. Two classes of relations are naturally investigated from
this point of view: the one of functional rational relations — which we call ra-
tional functions, in spite of the unfortunate collision with a classical terminology in
mathematics and the one of sequential rational functions — which we simply call
sequential functions.

Each of these classes would deserve a full lecture. We just give here the definitions
and state the main results.

4.1 Rational functions

Proposition 22. Let θ : A∗ → B∗ be a rational relation realised by a trim repre-
sentation 〈 I, µ, T 〉. If θ is a function, then all non zero entries of the matrices µ(a)
are words (monomials).

Work in Progress – 104 – 21 January 2019

Lecture notes Weighted Automata and Transducers

Theorem 23. It is decidable whether a rational relation is functional or not (with
a quadratic complexity).

Example 24. Figure 8 shows a transducer which realises a functional relation
(which is not so obvious at first sight).

a |x a |x4

a |x
a |x3

a |x3

a |x2

Figure 8: A functional transducer

4.2 Sequential functions

Definition 25. A rational function is sequential (resp. co-sequential) if it is realised
by a row-monomial representation (resp. column-monomial representation), that is,
if the underlying input automaton of a real-time transducer which realises it is
deterministic (resp. co-deterministic).

Theorem 26. It is decidable whether a rational function is sequential or not (with
a polynomial complexity).

Theorem 27. Every rational function is the composition of a sequential function
by a co-sequential function.

5 Exercises

1. Apply the construction of the proof of Theorem 3 in order to build real-time transducers
from the two transducers below which realise the universal relation on {a}∗×{b}∗.

a |11 |b

(a) U1

1 |1
a |1 1 |b

(b) U2

2. Give a realisation by representation of the following relations:

(a) the complement of the identity; (b) the lexicographic order; (c) the radix
order.

Not to be circulated – 105 – 21 January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

3. Finite and infinite components of a rational relation. Let τ : A∗ → B∗ be a
relation. The finite and infinite components τf and τ∞ of τ are defined by:

τf(w) =

{
τ(w) if ‖τ(w)‖ is finite
∅ otherwise

et τ∞(w) =

{
∅ if ‖τ(w)‖ is finite
τ(w) otherwise

Show that if τ is rational, then τf and τ∞ are rational and effectively computable from τ .

4. Fibonacci reduction. Give a transducer which realises the composition of the relations
realised by the transducers below (the transducer on the left by the transducer on the right).

1 |a 1 |ab

a |1

b |1

a |ab

b |b a |a b |ba

1 |bb 1 |bb |1

a |aa

b |1

a |ab

b |b a |a

5. Choosing the uniformisation. Let A = {a, b, c} be a totally ordered alphabet, where
a < b < c , and let θ be the rational relation from A∗ into itself whose graph is:

θ̂ = (a, a)∗ (b, 1)∗ (1, b) ∪ (a, 1)∗ (b, a)∗ (1, c) .

Show that neither the radix uniformisation θrad nor the lexicographic selection θ lex are ra-
tional functions.

6. Inherently ambiguous rational relation. Let V1 and W1 be the transducers of
Example IV.2:

V1 = {(anbm, cn) | n, m ∈ N} and W1 = {(anbm, cm) | n, m ∈ N} .

Show that the rational relation V1 ∪ W1 is inherently ambiguous.

Work in Progress – 106 – 21 January 2019

Notation Index

� (action defined by the quotient), 62

0K (zero of the semiring K), 2
1K (identity of the semiring K), 2

A, B, . . . (automata), 5
A/ν (quotient of A by ν), 37
A⊗B (tensor product of A and B), 29
AL (minimal (Boolean) aut. of L), 36
A (behaviour of A), 6
Â (determinisation of A), 60
As (minimal automaton of s), 63
An (automaton with subliminal states), 39
〈 A, Q, I, E, T 〉 (Boolean, weighted aut.), 4
〈 A, Q, i, δ, T 〉 (deterministic Boolean aut.),

36
〈K, A, Q, I, E, T 〉 (weighted automaton), 5
A X=⇒ B (A conjugate to B by X), 45

B (Boolean semiring), 3

CA (set of computations in A), 6

Dom θ (domain of the relation θ), 76
dim V (dimension of the space V), 65
δ(p, w) (transition in deterministic aut.), 36

〈〈〈G 〉〉〉 (submodule generated by G), 56

Im θ (image of the relation θ), 76
InA(p) (incoming bouquet), 40
iA (subliminal initial state), 39
ιK (intersection with K), 80

K (arbitrary semiring), 2
K〈〈A∗〉〉 (series over A∗ with coef. in K), 7
KQ×Q (matrices with entries in K), 2

L (characteristic series of L), 8
�(d), �(c) (label of a path, of a comput.), 6
|d|, |c| (length of a path, of a comput.), 6

µ ⊗ κ (tensor product of µ and κ), 28

N (semiring of non negative integers), 3
Nmax (semiring N, max, +), 3
Nmin (semiring N, min, +), 3
ν (Nerode equivalence), 37
ν ◦ µ (composition of µ by ν), 99

OutA(p) (outgoing bouquet), 40

p · w (transition in deterministic aut.), 36
ΦA (observation morphism), 63
ϕn (morphism from An to Bn), 40
ΨA (control morphism), 61

Q (semiring of rational numbers), 3
Q+ (semiring of non neg. rational numb.), 3

RA (reachability set of A), 59
RL (set of quotients of L), 36
Rs (set of quotients of s), 62
R (semiring of real numbers), 3
R+ (semiring of non neg. real numb.), 3
r(s) (rank of the series s), 65

〈s, w〉 (coefficient of w in s), 7
s � t (Hadamard product of s and t), 27

tA (subliminal final state), 39
S ◦ T (composition of T by S), 88
θ̂ (graph of the relation θ), 75
�θ (complement of the relation θ), 76
θlex (lexicographic selection of θ), 102
θrad (radix uniformisation of θ), 102

u−1L (quotient of L by u), 36

w(d), w(c) (weight of a path, of a comput.),
6

wl(d), wl(c) (weighted label of a path, of a
comput.), 6

w−1s (quotient of s by w), 61

X⊗Y (tensor product of X and Y), 27

2.16 – Finite automata based computation models MPRI 2018/2019

Xϕ (amalgamation matrix), 46

Z (semiring of integers), 3
Zmax (semiring Z, max, +), 3

Work in Progress – 108 – 21 January 2019

