Lecture V

Transducers (2)
 Realisation by representations

In this lecture, we start again the study of transducers, this time by means of their realisation by representations. To that end, one term of the direct product plays a particular role and this yields an almost new computation model which proves to be more natural and apt to many specialisations.

After a new presentation of the Composition Theorem in this other framework, the remaining of the lecture presents such specialisations. We first present the rational uniformisation property which is obtained by the construction of the Schützenberger immersions applied to the 'real-time' transducers model. We then sketch the properties of functional rational relations.

Contents

1 Real-time transducers and representations 92
1.1 Definitions 92
1.2 Realisation of rational relations 93
1.3 Representations of rational relations 95
2 Composition and evaluation theorems 96
2.1 Evaluation Theorem 96
2.2 Composition of representations 97
3 Uniformisation of rational relations 99
3.1 Uniformisation of a relation 100
3.2 The Rational Uniformisation Theorem 101
4 Functional rational relations 101
5 Exercises 103

1 Real-time transducers and representations

We define a new model of transducers, which leads then naturally to a matrix representation of automata that the realise rational relations.

1.1 Definitions

The definition of real-time transducers we have in mind requires first a slight shift of Definition IV. 1 of transducers towards the one of weighted automata, with the transformation of the notion of initial and final states into the one of initial and final functions. In a Boolean automaton $\mathcal{A}=\langle A, Q, I, E, T\rangle$, the subsets $I \subseteq Q$ and $T \subseteq Q$ are transformed into the functions $I: Q \rightarrow \mathfrak{P}\left(A^{*}\right)$ and $T: Q \rightarrow \mathfrak{P}\left(A^{*}\right)$ definied by:

$$
I(q)=\left\{\begin{array}{ll}
1_{A^{*}} & \text { if } q \text { is an initial state } \\
\emptyset & \text { otherwise },
\end{array} \quad T(p)= \begin{cases}1_{A^{*}} & \text { if } p \text { is a final state } \\
\emptyset & \text { otherwise }\end{cases}\right.
$$

The definition of the label of a computation is changed accordingly so that the language accepted by the automaton, its behaviour, stays unchanged.

Definition 1. A real-time transducer ${ }^{1}$ on $A^{*} \times B^{*}, \mathcal{T}=\left\langle A^{*} \times B^{*}, Q, I, E, T\right\rangle$, is an automaton the transitions of which are labelled by elements of $A \times \mathfrak{P}\left(B^{*}\right)$ and with initial and final functions with values in $\mathfrak{P}\left(B^{*}\right)$, that is, $E \subseteq Q \times A \times \mathfrak{P}\left(B^{*}\right) \times Q$ and $I, T: Q \rightarrow \mathfrak{P}\left(B^{*}\right)$.

The transducer \mathcal{T} is said to be finite if E is finite, if every transition is labelled in $A \times \operatorname{Rat} B^{*}$ and if I and T are with values in $\operatorname{Rat} B^{*}$.

Example 2. Figure 1 shows three real-time transducers.

(a)

(b) \mathcal{G}_{1}

(c)

Figure 1: Three real-time transducers
More generally, the transitions of \mathcal{T} are thus of the form:

$$
p \xrightarrow{a \mid K_{a, p, q}} q \quad \text { with } \quad a \in A, K_{a, p, q} \subseteq B^{*}
$$

[^0]from which we deduce the form of the computations of \mathcal{T} :
$$
c=\xrightarrow{I\left(p_{0}\right)} p_{0} \xrightarrow{a_{1} \mid K_{a_{1}, p_{0}, p_{1}}} p_{1} \xrightarrow{a_{2} \mid K_{a_{2}, p_{1}, p_{2}}} p_{2} \cdots p_{n-1} \xrightarrow{a_{n} \mid K_{a_{n}, p_{n-1}, p_{n}}} p_{n}^{T\left(p_{n}\right)},
$$
and the one of their label:
$$
|c|=\left(1_{A^{*}}, I\left(p_{0}\right)\right)\left(a_{1}, K_{a_{1}, p_{0}, p_{1}}\right)\left(a_{2}, K_{a_{2}, p_{1}, p_{2}}\right) \cdots\left(a_{n}, K_{a_{n}, p_{n-1}, p_{n}}\right)\left(1_{A^{*}}, T\left(p_{n}\right)\right) .
$$

The relation $\theta: A^{*} \rightarrow B^{*}$ realised by \mathcal{T} is thus, for every $w=a_{1} a_{2} \cdots a_{n}$ in A^{*} :

$$
\theta(w)=\bigcup_{\substack{c \text { calcul de } \mathcal{T} \\ \pi_{A} *(c \mid)=w}} I\left(p_{0}\right) K_{a_{1}, p_{0}, p_{1}} K_{a_{2}, p_{1}, p_{2}} \cdots K_{a_{n}, p_{n-1}, p_{n}} T\left(p_{n}\right)
$$

1.2 Realisation of rational relations

Theorem 3. A relation $\theta: A^{*} \rightarrow B^{*}$ is rational if and only if it is realised by a finite real-time transducer.

Proof. (i) The condition is sufficient. Let \mathcal{T} be a finite real-time transducer. If K is a rational language of B^{*} accepted by \mathcal{A} (Figure 2 (a)), a transition $p \xrightarrow{a \mid K} q$ of \mathcal{T} (Figure $2(\mathrm{~b})$) is replaced by a set of labelled transitions (Figure $2(\mathrm{c})$), the initial and final functions $I(q)=K$ and $T(p)=K$ by two sets of labelled transitions (Figure 2 (d) and (e)).

The transducer we obtain in this way is easily seen to be equivalent to the tranducer \mathcal{T} we started from. This construction may yield spontaneous transitions which are then eliminated by the classical algorithm and the result is then a normalised transducer, still equivalent to \mathcal{T}. Figure 3 shows this construction applied to the transducer \mathcal{G}_{1} of Figure $1(\mathrm{~b})$.

(a)
(b)

(e)

Figure 2: Transforming a real-time transducer into a normalised transducer
(ii) The condition is necessary. Let $\theta: A^{*} \rightarrow B^{*}$ be a rational relation and \mathcal{T} a subnormalised transducer which realises $\hat{\theta}$. The transducer \mathcal{T} is written under the
matrix form: $\mathcal{T}=\langle I, E, T\rangle$ where I and T are Boolean vectors of dimension Q and where E is a matrix of dimension $Q \times Q$ the entries of which are subsets of $\left(A \times\left\{1_{B^{*}}\right\}\right) \cup\left(\left\{1_{A^{*}}\right\} \times B\right)$ - if \mathcal{T} is normalised - or of $\left(A \times\left\{1_{B^{*}}\right\}\right) \cup\left(\left\{1_{A^{*}}\right\} \times B\right) \cup(A \times B)$ - if \mathcal{T} is subnormalised. In any case,

$$
\begin{equation*}
\widehat{\theta}=|\mathcal{T}|=I \cdot E^{*} \cdot T \tag{1.1}
\end{equation*}
$$

holds. In any case also, we can write

$$
\begin{array}{ccc}
& E=F+G \quad \text { with } & G \in\left(\left\{1_{A^{*}}\right\} \times B\right)^{Q \times Q} \\
\text { and } & F \in\left(A \times\left\{1_{B^{*}}\right\}\right)^{Q \times Q} & \text { or } \\
& F \in\left(\left(A \times\left\{1_{B^{*}}\right\}\right) \cup(A \times B)\right)^{Q \times Q}
\end{array}
$$

according to whether \mathcal{T} is normalised or subnormalised. Equation (1.1) reads then:

$$
|\mathcal{T}|=I \cdot E^{*} \cdot T=I \cdot(F+G)^{*} \cdot T=I \cdot\left(G^{*} \cdot F\right)^{*} \cdot G^{*} \cdot T=I \cdot G^{*} \cdot\left(F \cdot G^{*}\right)^{*} \cdot T .
$$

This shows that \mathcal{T} is equivalent to the two transducers \mathcal{T}^{\prime} and $\mathcal{T}^{\prime \prime}$ with:

$$
\mathcal{T}^{\prime}=\left\langle I, G^{*} \cdot F, G^{*} \cdot T\right\rangle \quad \text { and } \quad \mathcal{T}^{\prime \prime}=\left\langle I \cdot G^{*}, F \cdot G^{*}, T\right\rangle .
$$

The entries of G^{*} belong to ($\left.1_{A^{*}} \times \operatorname{Rat} B^{*}\right)$, as do those as those of $F \cdot G^{*}$ belong to $\left(A \times \operatorname{Rat} B^{*}\right): \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ are two finite real-time transducers. Example 4 shows these computations for the transducer \mathcal{G}_{2}.

(a) \mathcal{G}_{1}

(b) after construction

(c) \mathcal{G}_{2}, after closure and quotient

Figure 3: A real-time transducer transformed into a normalised transducer

Example 4. The matrix representation of \mathcal{G}_{2} is:

$$
I_{2}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
0 & (a, 1) & (b, 1) \\
(1, a) & (1, a) & 0 \\
(1, b) & 0 & (1, b)
\end{array}\right), \quad T_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

from which we compute:

$$
F_{2}=\left(\begin{array}{ccc}
0 & (a, 1) & (b, 1) \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad G_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
(1, a) & (1, a) & 0 \\
(1, b) & 0 & (1, b)
\end{array}\right), \quad G_{2}^{*}=\left(\begin{array}{ccc}
(1,1) & 0 & 0 \\
\left(1, a^{+}\right) & \left(1, a^{*}\right) & 0 \\
\left(1, b^{+}\right) & 0 & \left(1, b^{*}\right)
\end{array}\right) .
$$

The transducer $\mathcal{G}_{2}^{\prime}=\left\langle I_{2}, G_{2}^{*} \cdot F_{2}, G_{2}^{*} \cdot T_{2}\right\rangle$ is shown at Figure 5 and it is easily seen that $\mathcal{G}_{2}^{\prime \prime}=\left\langle I_{2} \cdot G_{2}^{*}, F_{2} \cdot G_{2}^{*}, T_{2}\right\rangle$ is equal to \mathcal{G}_{1}.

Figure 4: The real-time transducer \mathcal{G}_{2}^{\prime}

1.3 Representations of rational relations

Definition 5. Let A^{*} and B^{*} be two free monoids. A representation of A^{*} into Rat B^{*} of dimension Q is a triple $\langle I, \mu, T\rangle$ where $\mu: A^{*} \rightarrow\left(\operatorname{Rat} B^{*}\right)^{Q \times Q}$ is a morphism (hence entirely defined by the matrices $\mu(a)$ for a in A), and where I and T are respectively row and column vectors in $\left(\operatorname{Rat} B^{*}\right)^{Q}$.

Theorem 6. A relation $\theta: A^{*} \rightarrow B^{*}$ is rational if and only if there exists a representation $\langle I, \mu, T\rangle$ of A^{*} into Rat B^{*} which realises θ, that is, such that

$$
\forall w \in A^{*} \quad \theta(w)=I \cdot \mu(w) \cdot T .
$$

Proof. If $\mathcal{T}=\langle I, E, T\rangle$ is a real-time transducer, the matrix E defines the morphism $\mu: A^{*} \rightarrow\left(\operatorname{Rat} B^{*}\right)^{Q \times Q}$ by

$$
\begin{equation*}
E=\sum_{a \in A}(a, 1)(1, \mu(a)) \tag{1.2}
\end{equation*}
$$

that is,

$$
\forall a \in A, \forall p, q \in Q \quad \mu(a)_{p, q}= \begin{cases}K_{a, p, q} & \text { if } p \xrightarrow[\mathcal{T}]{\underline{a \mid} K_{a, p, q}} q \\ \emptyset & \text { otherwise },\end{cases}
$$

under the hypothesis, necessary for the writing $\mathcal{T}=\langle I, E, T\rangle$, that for every a in A and every pair p, q in Q, there exists at most one transition in \mathcal{T} which goes from p to q and whose first component is a.

Conversely, a morphism $\mu: A^{*} \rightarrow\left(\operatorname{Rat} B^{*}\right)^{Q \times Q}$ defines, via the same Equation (1.2), the adjacency matrix of a finite real-time transducer. By induction on the length of the words w, it is then checked that:

$$
\forall w \in A^{*}, \forall p, q \in Q \quad \mu(w)_{p, q}=L \quad \Longleftrightarrow \quad L=\bigcup\{H \mid p \xrightarrow[\mathcal{T}]{w \mid H} q\}
$$

from which it follows that, for every w in $A^{*}, \theta(w)=I \cdot \mu(w) \cdot T$.
Example 7. The representations of the real-time transducers of Example 4 are the following:
(a) $I=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right), \quad \mu(a)=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & a & 0 \\ 0 & a b & 0\end{array}\right), \quad \mu(b)=\left(\begin{array}{ccc}b & 0 & 0 \\ 0 & 0 & 1 \\ 0 & b a & 0\end{array}\right), \quad T=\left(\begin{array}{c}1 \\ a \\ a b\end{array}\right) ;$
(b) $\quad I=(1), \quad \mu(a)=\left(a^{+}\right), \quad \mu(b)=\left(b^{+}\right), \quad T=(1)$;
(c) $\quad I=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right), \quad \mu(a)=\left(\begin{array}{lll}a & b & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad \mu(b)=\left(\begin{array}{lll}b & a & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad T=\left(\begin{array}{c}A^{+} \\ A^{*} \\ 1\end{array}\right)$.

2 Composition and evaluation theorems

The realisation of rational relations by representations allows to state a new composition theorem. The result in itself is not new, since we proved it already in Lecture IV: the composition of two rational relations is a rational relation (Theorem IV.25). But, at the same time, what we present here is more than a new proof. This result is indeed now the consequence of another result: the composition of two representations is a representation, which is new.

The idea is to generalise the composition of morphisms between free monoids to representations. In Lecture IV, we had deduce the 'evaluation theorem' from the closure under composition of rational relations. We now proceed the other way around and establish the evaluation theorem first.

2.1 Evaluation Theorem

In the sequel of the section, $\langle I, \mu, T\rangle$ is a representation of A^{*} into $\operatorname{Rat} B^{*}$ of dimension Q, that is:
$\mu: A^{*} \rightarrow\left(\operatorname{Rat} B^{*}\right)^{Q \times Q}$ is a morphism, $I \in\left(\operatorname{Rat} B^{*}\right)^{1 \times Q}$ and $T \in\left(\operatorname{Rat} B^{*}\right)^{Q \times 1}$.
Recall that any application extends additively, that is, if $K \subseteq A^{*}$, then:

$$
\mu(K)=\sum_{w \in K} \mu(w) \quad \text { that is, } \quad \forall p, q \in Q \quad \mu(K)_{p, q}=\bigcup_{w \in K} \mu(w)_{p, q} .
$$

Proposition 8. If $\mu: A^{*} \rightarrow\left(\operatorname{Rat} B^{*}\right)^{Q \times Q}$ is a morphism, then

$$
K \in \operatorname{Rat} A^{*} \quad \Longrightarrow \quad \mu(K) \in\left(\operatorname{Rat} B^{*}\right)^{Q \times Q}
$$

that is, for every p and q in $Q, \mu(K)_{p, q}$ belongs to Rat B^{*}.
From which follows:
Corollary 9. If $\theta: A^{*} \rightarrow B^{*}$ is a rational relation, then

$$
K \in \operatorname{Rat} A^{*} \quad \Longrightarrow \quad \theta(K) \in \operatorname{Rat} B^{*}
$$

Proof. If θ is a rational relation, then θ is realised by a representation $\langle I, \mu, T\rangle$ and

$$
\theta(K)=\bigcup_{w \in K} \theta(w)=\bigcup_{w \in K} I \cdot \mu(w) \cdot T=I \cdot\left(\bigcup_{w \in K} \mu(w)\right) \cdot T=I \cdot \mu(K) \cdot T
$$

Proof of Proposition 8. (i) Let us recall first the theorem (see proof of Proposition I.17):

Theorem 10. Let M be a monoid and E a matrix of dimension $Q \times Q$, the entries of which are in $\mathfrak{P}(M)$. Then, the entries of E^{*} belong to the rational closure of the entries of E.
(ii) Preparation. We check successively the 'closure' by union, product, and star:

$$
\begin{equation*}
\mu(K), \mu(L) \in\left(\operatorname{Rat} B^{*}\right)^{Q \times Q} \quad \Longrightarrow \quad \mu(K \cup L) \in\left(\operatorname{Rat} B^{*}\right)^{Q \times Q} \tag{2.1}
\end{equation*}
$$

since, for every p and q in $Q, \mu(K \cup L)_{p, q}=\mu(K)_{p, q} \cup \mu(L)_{p, q}$.

$$
\begin{equation*}
\mu(K), \mu(L) \in\left(\operatorname{Rat} B^{*}\right)^{Q \times Q} \quad \Longrightarrow \quad \mu(K L) \in\left(\operatorname{Rat} B^{*}\right)^{Q \times Q} \tag{2.2}
\end{equation*}
$$

since, on one hand-side:

$$
\begin{aligned}
\mu(K L) & =\bigcup\{\mu(w) \mid w \in K L\}=\bigcup\{\mu(u v) \mid u \in K, v \in L\} \\
& =\bigcup\{\mu(u) \mu(v) \mid u \in K, v \in L\} \\
& =(\bigcup\{\mu(u) \mid u \in K\})(\bigcup\{\mu(v) \mid v \in L\})=\mu(K) \mu(L)
\end{aligned}
$$

and, on the other, since Rat B^{*} is a semiring, (Rat $\left.B^{*}\right)^{Q \times Q}$ is closed by product. And, finally:

$$
\begin{equation*}
\mu(K) \in\left(\operatorname{Rat} B^{*}\right)^{Q \times Q} \quad \Longrightarrow \quad \mu\left(K^{*}\right) \in\left(\operatorname{Rat} B^{*}\right)^{Q \times Q} \tag{2.3}
\end{equation*}
$$

since, by (2.1) and (2.2)

$$
\mu\left(K^{*}\right)=(\mu(K))^{*}
$$

and Theorem 10 applies.
(iii) Proposition 8 is the consequence of the three equations (2.1), (2.2) and (2.3), by induction on the depth of a rational expression which denotes K.

2.2 Composition of representations

Definition 11. Let $\mu: A^{*} \rightarrow\left(\operatorname{Rat} B^{*}\right)^{Q \times Q}$ and $\nu: B^{*} \rightarrow\left(\operatorname{Rat} C^{*}\right)^{R \times R}$ be two morphisms. The composition of μ by ν is the map $\pi=\nu \circ \mu$ from A^{*} to $\left(\operatorname{Rat} C^{*}\right)^{(Q \times R) \times(Q \times R)}$, defined by the block decomposition:

$$
\forall w \in A^{*} \quad \pi(w)_{p \times R, q \times R}=\nu\left(\mu(w)_{p, q}\right)
$$

Remark that this definition is built upon Proposition 8 in the sense that the entries of $\pi(w)$ are a priori in $\mathfrak{P}\left(A^{*}\right)$ and it is the proposition that insures that they are in $\operatorname{Rat} C^{*}$.

Examples 12. (i) Definition 11 coincides with the definition of monoid morphisms composition, in the case where μ and ν are such morphisms.
(ii) If $\mu_{1}(a)=\left(\begin{array}{ll}0 & a \\ b & 0\end{array}\right), \mu_{1}(b)=\left(\begin{array}{ll}b & 0 \\ 0 & b\end{array}\right)$ and $\nu_{1}(a)=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right), \quad \nu_{1}(b)=\left(\begin{array}{ll}0 & b \\ a & 0\end{array}\right)$, then:

$$
\pi_{1}(a)=\left(\begin{array}{cccc}
0 & 0 & a & 0 \\
0 & 0 & 0 & a \\
0 & b & 0 & 0 \\
a & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \pi_{1}(b)=\left(\begin{array}{cccc}
0 & b & 0 & 0 \\
a & 0 & 0 & 0 \\
0 & 0 & 0 & b \\
0 & 0 & a & 0
\end{array}\right)
$$

Definition 11 is legitimate thanks to the following proposition:
Proposition 13. $\pi=\nu \circ \mu: A^{*} \rightarrow\left(\operatorname{Rat} C^{*}\right)^{(Q \times R) \times(Q \times R)}$ is a morphism.
Proof. We want to prove that, for every u and v in A^{*}, it holds:

$$
[\nu \circ \mu](u v)=[\nu \circ \mu](u)[\nu \circ \mu](v) .
$$

For every p and q in Q, it holds:

$$
\begin{aligned}
([\nu \circ \mu](u v))_{p \times R, q \times R} & =\nu\left(\mu(u v)_{p, q}\right)=\nu\left(\sum_{r \in Q}\left(\mu(u)_{p, r} \mu(v)_{r, q}\right)\right) \\
& =\sum_{r \in Q} \nu\left(\mu(u)_{p, r} \mu(v)_{r, q}\right)=\sum_{r \in Q}\left(\nu\left(\mu(u)_{p, r}\right) \nu\left(\mu(v)_{r, q}\right)\right) \\
& =\sum_{r \in Q}\left([\nu \circ \mu](u)_{p \times R, r \times R}[\nu \circ \mu](v)_{r \times R, q \times R}\right) \\
& =([\nu \circ \mu](u) \cdot[\nu \circ \mu](v))_{r \times R, q \times R} .
\end{aligned}
$$

Theorem 14. Let $\theta: A^{*} \rightarrow B^{*}$ and $\sigma: B^{*} \rightarrow C^{*}$ be two rational relations, realised by the representations $\langle I, \mu, T\rangle$ and $\langle J, \kappa, U\rangle$ respectively. Then, $\sigma \circ \theta: A^{*} \rightarrow C^{*}$ is the rational relation realised by the representation $\langle K, \pi, V\rangle$, with:

$$
\pi=\nu \circ \mu, \quad K=J \cdot \nu(I) \quad \text { and } \quad V=\nu(T) \cdot U .
$$

Proof.

$$
\begin{aligned}
\forall w \in A^{*} \quad[\sigma \circ \theta](w) & =\sigma(\theta(w))=\sigma(I \cdot \mu(w) \cdot T) \\
& =J \cdot \nu(I \cdot \mu(w) \cdot T) \cdot U \\
& =(J \cdot \nu(I)) \cdot \nu(\mu(w)) \cdot(\nu(T) \cdot U) .
\end{aligned}
$$

Theorem 14 yields a new method of composition of transducers, by means of the sequence of transformations:
transducer \rightsquigarrow real-time transducer \rightsquigarrow representation \rightsquigarrow
composition of representations \rightsquigarrow real-time transducer \rightsquigarrow transducer.

Example 15. The morphism $\varphi_{1}:\{a, b, c\}^{*} \rightarrow\{x, y\}^{*}$ defined by:

$$
\varphi_{1}(a)=x, \quad \varphi_{1}(b)=y x, \quad \varphi_{1}(c)=x y
$$

is realised by the representation $\left\langle 1, \varphi_{1}, 1\right\rangle$. The relation $\varphi_{1}{ }^{-1}:\{x, y\}^{*} \rightarrow\{a, b, c\}^{*}$ is realised by the real-time transducer below:

and then by the representation $\left\langle J_{1}, \kappa_{1}, U_{1}\right\rangle$ where:

$$
J_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right), \quad \kappa_{1}(x)=\left(\begin{array}{ccc}
a & c & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \kappa_{1}(y)=\left(\begin{array}{lll}
0 & 0 & b \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad U_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

The relation $\varphi_{1}^{-1} \circ \varphi_{1}: A^{*} \rightarrow A^{*}$ is realised by the representation $\left\langle J_{1}, \kappa_{1}, U_{1}\right\rangle \circ\left\langle 1, \varphi_{1}, 1\right\rangle=\left\langle J_{1}, \pi_{1}, U_{1}\right\rangle$ with $\pi_{1}=\kappa_{1} \circ \varphi_{1}$, that is: $\pi_{1}(a)=\kappa_{1}(x)$,

$$
\pi_{1}(b)=\kappa_{1}(y x)=\left(\begin{array}{ccc}
b & 0 & 0 \\
a & c & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \pi_{1}(c)=\kappa_{1}(x y)=\left(\begin{array}{ccc}
c & 0 & a b \\
0 & 0 & 0 \\
0 & 0 & b
\end{array}\right)
$$

which corresponds to the real-time transducer below.

Figure 5: A transducer for $\varphi_{1}^{-1} \circ \varphi_{1}$

3 Uniformisation of rational relations

As a first illustration of the realisation of rational relations by representations, we establish a Rational Uniformisation Theorem.

3.1 Uniformisation of a relation

The notion of uniformisation of a relation (and the terminology) comes from logic (more precisely from descriptive set theory). In these notes, it will be only a definition that allows us to state a result.

If θ is any relation, from a set E into another set F, a function τ from E to F uniformises θ (or is a uniformisation of θ) if, for every e in the domain of θ, $\tau(e)$ is an element of $\theta(e)$, that is:

$$
\operatorname{Dom} \tau=\operatorname{Dom} \theta \quad \text { and } \quad \forall e \in \operatorname{Dom} \theta \quad \tau(e) \in \theta(e) .
$$

A uniformisation τ of a relation θ consists then in a choice function, a choice that is repeated for every element of the domain of θ, in the selection of an element $\tau(e)$ in each of the subsets $\theta(e) \quad(c f$. Figure 6).

Figure 6: A uniformisation τ of a relation θ

Example 16. If θ is a relation from A^{*} (From an arbitrary set E indeed) in a free monoid B^{*}, the radix uniformisation ${ }^{2}$ is the function $\theta_{\text {rad }}$ which associate with every element e of the domain of θ the smallest element, in the radix order, of $\theta(e)$.

Along the same lines, we can define the lexicographic selection $\theta_{\text {lex }}$: it is the function which associates with every element e of the domain of θ the smallest element, in the lexicographic order, of $\theta(e)$, if it exixts. As the lexicographic order is not a well ordering, this minimum element does not necessarily exist and $\theta_{\text {lex }}$ is not always a uniformisation, that is, it is a function the domain of which strictly contained in the one of θ.

[^1]
3.2 The Rational Uniformisation Theorem

After the definition of uniformisation, the problem consists in knowing whether it is possible, when θ belongs to a certain family of relations, to define by selecting for every e an element in $\theta(e)$, a uniformisation τ which belongs to that familiy of relations, or to another given family of functions. The problem is solved for the family of rational relations by the following result:

Theorem 17 (Eilenberg 1974). Every rational relation is uniformised by an unambiguous functional rational relation.

Proof. Recall that if \mathcal{A} is an automaton over A^{*} and $\hat{\mathcal{A}}$ is its determinisation, the accessible part \mathcal{S} of $\hat{\mathcal{A}} \times \mathcal{A}$ is a covering of \mathcal{A}, called the Schützenberger covering or S-covering of \mathcal{A}, and that the projection $\pi_{\widehat{\mathcal{A}}}$ of \mathcal{S} onto $\widehat{\mathcal{A}}$ is an In-morphism. As a result we can, by eliminating some transitions, construct a sub-automaton \mathcal{T} of \mathcal{S}, called an S-immersion of \mathcal{A}, which is unambiguous and equivalent to \mathcal{A}.

Let \mathcal{C} be a real-time transducer which realises a relation θ (corresponding to a representation $\langle I, \mu, T\rangle$ of $\theta), \mathcal{A}$ its underlying input automaton, and \mathcal{T} an S-immersion in \mathcal{A}. Since \mathcal{T} is an immersion in \mathcal{A} each transition (r, a, s) of \mathcal{T} corresponds to a unique transition (p, a, q) in \mathcal{A} and hence to a unique transition $\left(p,\left(a, \mu(a)_{p, q}\right), q\right)$ in \mathcal{C}. If we choose, arbitrarily, a word w in $\mu(a)_{p, q}$, we construct a transducer \mathcal{U} by replacing each transition (r, a, s) in \mathcal{T} by $(r,(a, w), s)$. Since \mathcal{T} is unambiguous, the relation τ realised by \mathcal{U} is an unambiguous function, and since \mathcal{T} is equivalent to \mathcal{A} it has the same domain as θ, and its graph is contained in that of θ, by the choice of w.

Example 18. .- Let θ_{2} be the relation from $\{a, b\}^{*}$ into itself which replace in every word one of its factor $a b$ by the set $b^{+} a$ (and which is not defined on the words that do not contain such a factor). Figure 7 shows a transducer \mathcal{E}_{2} which realises θ_{2} and whose underlying input automaton is \mathcal{A}_{1} (on the left, verticaly), its determinisation $\widehat{\mathcal{A}_{1}}$ (horizontaly, at the top) and the result of the construction decribed in the proof above.

Since the only possible uniformisation of a function is the function itself, Theorem 17 implies:

Corollary 19.

Every functional rational relation is an unambiguous rational relation.

4 Functional rational relations

The realisation by representation yields handy criteria for defining or characterising classes of relations. The first class that we investigate from this point of view is the

Figure 7: The transducer \mathcal{E}_{2} and a S-uniformisation of θ_{2}
one of functional rational relations (which we also call rational functions, in spite of the unfortunate collision with a classical terminology in mathematics).

Proposition 20. Let $\theta: A^{*} \rightarrow B^{*}$ be a rational relation realised by a trim representation $\langle I, \mu, T\rangle$. If θ is a function, then all non zero entries of the matrices $\mu(a)$ are words (monomials).

Theorem 21. It is decidable whether a rational relation is functional or not (with a quadratic complexity).

Example 22. Figure 8 shows a transducer which realises a functional relation (which is not so obvious at first sight).

Figure 8: A functional transducer

Definition 23. A rational function is sequential (resp. co-sequential) if it is realised by a row-monomial representation (resp. column-monomial representation), that is, if the underlying input automaton of a real-time transducer which realises it is deterministic (resp. co-deterministic).

Theorem 24. Every rational function is the composition of a sequential function by a co-sequential function.

5 Exercises

1. Apply the construction of the proof of Theorem 6 in order to build real-time transducers from the two transducers below which realise the universal relation on $\{a\}^{*} \times\{b\}^{*}$.

(a) \mathcal{U}_{1}

(b) \mathcal{U}_{2}
2. Give a realisation by representation of the following relations:
(a) the complement of the identity;
(b) the lexicographic order;
(c) the radix order.
3. Finite and infinite components of a rational relation. Let $\tau: A^{*} \rightarrow B^{*}$ be a relation. The finite and infinite components τ_{f} and τ_{∞} of τ are defined by:

$$
\tau_{\mathrm{f}}(w)=\left\{\begin{array}{ll}
\tau(w) & \text { if }\|\tau(w)\| \text { is finite } \\
\emptyset & \text { otherwise }
\end{array} \quad \text { et } \quad \tau_{\infty}(w)= \begin{cases}\emptyset & \text { if }\|\tau(w)\| \text { is finite } \\
\tau(w) & \text { otherwise }\end{cases}\right.
$$

Show that if τ is rational, then τ_{f} and τ_{∞} are rational and effectively computable from τ.
4. Fibonacci reduction. Give a transducer which realises the composition of the relations realised by the transducers below (the transducer on the left by the transducer on the right).

5. Choosing the uniformisation. Let $A=\{a, b, c\}$ be a totally ordered alphabet, where $a<b<c$, and let θ be the rational relation from A^{*} into itself whose graph is:

$$
\widehat{\theta}=(a, a)^{*}(b, 1)^{*}(1, b) \cup(a, 1)^{*}(b, a)^{*}(1, c) .
$$

Show that neither the radix uniformisation $\theta_{\text {rad }}$ nor the lexicographic selection $\theta_{\text {lex }}$ are rational functions.

Notation Index

\triangleright (action defined by the quotient), 60
$0_{\mathbb{K}}$ (zero of the semiring $\left.\mathbb{K}\right), 2$
$1_{\mathbb{K}}$ (identity of the semiring $\left.\mathbb{K}\right), 2$
$\mathcal{A}, \mathcal{B}, \ldots$ (automata), 5
$\mathcal{A} / \nu($ quotient of \mathcal{A} by $\nu), 35$
\mathcal{A}_{L} (minimal (Boolean) aut. of L), 34
$|\mathcal{A}|($ behaviour of $\mathcal{A}), 6$
$\widehat{\mathcal{A}}($ determinisation of $\mathcal{A}), 58$
\mathcal{A}_{s} (minimal automaton of s), 61
\mathcal{A}_{n} (automaton with subliminal states), 37
$\langle A, Q, I, E, T\rangle$ (Boolean, weighted aut.), 4
$\langle A, Q, i, \delta, T\rangle$ (deterministic Boolean aut.), 34
$\langle\mathbb{K}, A, Q, I, E, T\rangle$ (weighted automaton), 5
$\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}(\mathcal{A}$ conjugate to \mathcal{B} by $X), 43$
\mathbb{B} (Boolean semiring), 3
$\mathrm{C}_{\mathcal{A}}($ set of computations in $\mathcal{A}), 6$

Dom θ (domain of the relation θ), 74
$\operatorname{dim} V($ dimension of the space $V), 63$
$\delta(p, w)$ (transition in deterministic aut.), 34
$\langle G\rangle$ (submodule generated by G), 54
$\operatorname{Im} \theta$ (image of the relation θ), 74
$\ln _{\mathcal{A}}(p)$ (incoming bouquet), 38
$i_{\mathcal{A}}$ (subliminal initial state), 37
$\iota_{K}($ intersection with $K), 78$
\mathbb{K} (arbitrary semiring), 2
$\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ (series over A^{*} with coef. in \mathbb{K}), 7
$\mathbb{K}^{Q \times Q}$ (matrices with entries in \mathbb{K}), 2
$\underline{L}($ characteristic series of $L), 8$
$\ell(d), \ell(c)$ (label of a path, of a comput.), 6
$|d|,|c|$ (length of a path, of a comput.), 6
$\mu \otimes \kappa($ tensor product of μ and $\kappa), 28$
\mathbb{N} (semiring of non negative integers), 3
$\mathbb{N} \max ($ semiring $\mathbb{N}, \max ,+$), 3
$\mathbb{N} \min ($ semiring $\mathbb{N}, \min ,+), 3$
ν (Nerode equivalence), 35
$\nu \circ \mu($ composition of μ by $\nu), 97$

Out $_{\mathcal{A}}(p)$ (outgoing bouquet), 38
$p \cdot w$ (transition in deterministic aut.), 34
$\Phi_{\mathcal{A}}$ (observation morphism), 61
$\varphi_{\mathrm{n}}\left(\right.$ morphism from \mathcal{A}_{n} to $\left.\mathcal{B}_{\mathrm{n}}\right), 38$
$\Psi_{\mathcal{A}}($ control morphism $), 59$
\mathbb{Q} (semiring of rational numbers), 3
\mathbb{Q}_{+}(semiring of non neg. rational numb.), 3
$\mathbf{R}_{\mathcal{A}}($ reachability set of $\mathcal{A}), 57$
\mathbf{R}_{L} (set of quotients of L), 34
\mathbf{R}_{s} (set of quotients of s), 60
\mathbb{R} (semiring of real numbers), 3
\mathbb{R}_{+}(semiring of non neg. real numb.), 3
$r(s)$ (rank of the series s), 63
$\langle s, w\rangle$ (coefficient of w in s), 7
$s \odot t$ (Hadamard product of s and $t), 27$
$t_{\mathcal{A}}$ (subliminal final state), 37
$\mathcal{T} \circ \mathcal{S}$ (composition of \mathcal{T} and $\mathcal{S}), 86$
$\widehat{\theta}$ (graph of the relation θ), 73
C θ (complement of the relation θ), 74
$\theta_{\text {lex }}($ lexicographic selection of $\theta), 100$
$\theta_{\text {rad }}$ (radix uniformisation of θ), 100
$u^{-1} L$ (quotient of L by u), 34
$\mathbf{w}(d), \mathbf{w}(c)$ (weight of a path, of a comput.),
6
$\mathbf{w l}(d), \mathbf{w l}(c)$ (weighted label of a path, of a comput.), 6
$w^{-1} s$ (quotient of s by w), 59
$X \otimes Y$ (tensor product of X and $Y), 27$
X_{φ} (amalgamation matrix), 43
\mathbb{Z} (semiring of integers), 3
$\mathbb{Z} \max ($ semiring $\mathbb{Z}, \max ,+$), 3

General Index

a co-quotient, 44
accessible, 39
action, 52, 57, 59
addition
pointwise, 7
additivity, 74
algebra, 7
amalgamation matrix, 43
automaton
behaviour, 73
behaviour of,$- \mathbf{6}$
Boolean, 8
characteristic, 26
computation, 6
length, 6
conjugate, 43
controllable -, 59
dimension, 4
final function, 4
incidence matrix, 9
initial function, 4
morphism
bisimulation, 40
co-covering, 39
co-immersion, 39
co-quotient, 39
covering, 39
immersion, 39
In-bijective, $\mathbf{3 8}$
In-injective, 38
In-morphism, 39
In-surjective, 38
Out-bijective, 38
Out-injective, 38
Out-morphism, 39
Out-surjective, 38
quotient, 39
simulation, 40
observable -, 61
path, 5
label, 6
length, 6
w-label, 6
weight, 6
probabilistic, 27
proper, 77
Rabin and Scott, 81
state
subliminal final, $\mathbf{3 7}$
subliminal initial, $\mathbf{3 7}$
support, 8
transition
ε-transition, 38
incoming bouquet, 38
outgoing bouquet, $\mathbf{3 8}$
spontaneous, 38
unambiguous, 26
\mathbb{K}-automaton, $\mathbf{4}$
backward closure, 77
bisimulation, 33
Cauchy product, see series
computation
successful, 73
conformal, 39
conjugacy, 33, 43
control morphism, 59
convergence
simple, 11
covering, 34
determinisation, 58
subset construction, 58
dimension
of an automaton, 4
echelon system, 67
elimination
Gaussian -, 67
field
skew, 63
forward closure, 77
Gaussian elimination, 67
generating function, $\mathbf{2 6}$
Hadamard product, $\mathbf{2 7}$
identity
product-star, 16
sum-star, 16
In-morphism, 44
incidence matrix, 4
language
stochastic, 27
lateralisation, 33
length, 72
matrix
proper, 16
stochatic, 26
transfer, 43
Mealy machines, 72
minimal automaton, 34
module, 7
(left) module, 58
monoid
finitely generated, 22
of finite type, 22
Moore machines, 72
morphism
control -, 59
observation -, 61
morphism (of semirings), $\mathbf{3}$
multiplication
exterior, 7
Nerode equivalence, $\mathbf{3 5}$
observation morphism, 60
orbit, 52
Out-morphism, 33, 36, 44
polynomial, 8
power series, see series
locally finite family, 12
summable family, 12
quotient, 34, 44, see series
rational series, see series
reachability set, 57
regular,
seerepresentation53
relation
domain, 74
graph, 73
image, 74
rational, 75
representation
reduced, 63
right regular - of a monoid, 53
ring, 13, 20
division, 63
semiring, 2
commutative, $\mathbf{2}$
positive, 3, 8
strong, 20
topological semiring, 11
series, 7
Cauchy product of -7
characteristic, 8, 26
coefficient, 7
constant term of, 13
proper, 13
proper part of, $\mathbf{1 4}$
quotient of,- 59
rank, 63
rational, 14, 22
support, 8
stable, see submodule
state
final, 5
initial, 5
state-space, 58
states, 4
submodule
stable -, 62
subset construction, see determinisation
tensor product, $\mathbf{2 7}$
topology
dense subset, 12
product, 11
transducer
real-time, 101
transfer matrix, 43
transitions, 4
translation
right -, 53
Turing machine, 81
vector space
dimension of,- 63
words
factors, 78
subwords, 78

[^0]: ${ }^{1}$ In French: transducteur "temps-réel", a terminology that is not completely satisfactory but that I use for lack of a better translation.

[^1]: ${ }^{2}$ If radix order is called, a tempting option, military order (the oldest in the highest rank), we then get a military uniformisation...

