
Lecture V

Transducers (2)
Realisation by representations

In this lecture, we start again the study of transducers, this time by means of their
realisation by representations. To that end, one term of the direct product plays a
particular role and this yields an almost new computation model which proves to be
more natural and apt to many specialisations.

After a new presentation of the Composition Theorem in this other frame-
work, the remaining of the lecture presents such specialisations. We first present
the rational uniformisation property which is obtained by the construction of the
Schützenberger immersions applied to the ‘real-time’ transducers model. We then
sketch the properties of functional rational relations.
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1 Real-time transducers and representations

We define a new model of transducers, which leads then naturally to a matrix
representation of automata that the realise rational relations.

1.1 Definitions

The definition of real-time transducers we have in mind requires first a slight shift
of Definition IV.1 of transducers towards the one of weighted automata, with the
transformation of the notion of initial and final states into the one of initial and final
functions. In a Boolean automaton A = 〈 A, Q, I, E, T 〉, the subsets I ⊆ Q and
T ⊆ Q are transformed into the functions I : Q → P (A∗) and T : Q → P (A∗)
definied by:

I(q) =

 1A∗ if q is an initial state
∅ otherwise ,

T (p) =

 1A∗ if p is a final state
∅ otherwise .

The definition of the label of a computation is changed accordingly so that the
language accepted by the automaton, its behaviour, stays unchanged.

Definition 1. A real-time transducer1 on A∗×B∗, T = 〈 A∗×B∗, Q, I, E, T 〉 , is an
automaton the transitions of which are labelled by elements of A×P (B∗) and with
initial and final functions with values in P (B∗) , that is, E ⊆ Q×A×P (B∗)×Q

and I, T : Q → P (B∗) .
The transducer T is said to be finite if E is finite, if every transition is labelled

in A×Rat B∗ and if I and T are with values in Rat B∗.

Example 2. Figure 1 shows three real-time transducers.

1 |a 1 |ab

a |1

b |1

a |ab

b |b a |a b |ba

(a)

a |a+

b |b+

(b) G1

1 |A+ 1 |A∗

a |b + b |a

A |1

a |a + b |b A |1

A |1

(c)

Figure 1: Three real-time transducers

More generally, the transitions of T are thus of the form:

p
a|Ka,p,q−−−−−−→

T
q with a ∈ A , Ka,p,q ⊆ B∗ ,

1In French: transducteur “temps-réel”, a terminology that is not completely satisfactory but that
I use for lack of a better translation.
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from which we deduce the form of the computations of T :

c = I(p0)−→ p0
a1|Ka1,p0,p1−−−−−−−−−→ p1

a2|Ka2,p1,p2−−−−−−−−−→ p2 · · · pn−1
an|Kan,pn−1,pn−−−−−−−−−−−→ pn

T (pn)−→ ,

and the one of their label:

c = (1A∗ , I(p0)) (a1, Ka1,p0,p1) (a2, Ka2,p1,p2) · · · (an, Kan,pn−1,pn) (1A∗ , T (pn)) .

The relation θ : A∗ → B∗ realised by T is thus, for every w = a1a2 · · · an in A∗:

θ(w) =
⋃

c calcul de T
πA∗( c )=w

I(p0)Ka1,p0,p1 Ka2,p1,p2 · · · Kan,pn−1,pn T (pn) .

1.2 Realisation of rational relations

Theorem 3. A relation θ : A∗ → B∗ is rational if and only if it is realised by a
finite real-time transducer.

Proof. (i) The condition is sufficient. Let T be a finite real-time transducer. If K

is a rational language of B∗ accepted by A (Figure 2(a)), a transition p
a|K−−−→ q of T

(Figure 2(b)) is replaced by a set of labelled transitions (Figure 2(c)), the initial
and final functions I(q) = K and T (p) = K by two sets of labelled transitions
(Figure 2(d) and(e)).

The transducer we obtain in this way is easily seen to be equivalent to the
tranducer T we started from. This construction may yield spontaneous transitions
which are then eliminated by the classical algorithm and the result is then a norm-
alised transducer, still equivalent to T . Figure 3 shows this construction applied to
the transducer G1 of Figure 1(b).

b

A

(a)

p q
a |K

(b)

p q
a |1 1 |b

A′′

1 |b

1 |b

1 |1

1 |1

(c)

q
1 |b

A′′

1 |1

1 |1

(d)

p
1 |b

A′′

1 |1

1 |1

(e)

Figure 2: Transforming a real-time transducer into a normalised transducer

(ii) The condition is necessary. Let θ : A∗ → B∗ be a rational relation and T a
subnormalised transducer which realises θ̂. The transducer T is written under the
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matrix form: T = 〈 I, E, T 〉 where I and T are Boolean vectors of dimension Q

and where E is a matrix of dimension Q×Q the entries of which are subsets of
(A×{1B∗ }) ∪ ({1A∗}×B) — if T is normalised — or

of (A×{1B∗}) ∪ ({1A∗}×B) ∪ (A×B) — if T is subnormalised. In any case,

θ̂ = T = I · E∗ · T (1.1)

holds. In any case also, we can write

E = F + G with G ∈ ({1A∗}×B)Q×Q

and F ∈ (A×{1B∗ })Q×Q or F ∈
(

(A×{1B∗ }) ∪ (A×B)
)Q×Q

according to whether T is normalised or subnormalised. Equation (1.1) reads then:

T = I · E∗ · T = I · (F + G)∗ · T = I · (G∗ · F )∗ · G∗ · T = I · G∗ · (F · G∗)∗ · T .

This shows that T is equivalent to the two transducers T ′ and T ′′ with:

T ′ = 〈 I, G∗ · F, G∗ · T 〉 and T ′′ = 〈 I · G∗, F · G∗, T 〉 .

The entries of G∗ belong to (1A∗ ×Rat B∗), as do those as those of F · G∗ belong
to (A×Rat B∗): T ′ and T ′′ are two finite real-time transducers. Example 4 shows
these computations for the transducer G2.

a |a+b |b+

(a) G1

a |1b |1

1 |a1 |b
1 |11 |1 1 |a1 |b

(b) after construction

a |1b |1

1 |a1 |b

1 |a1 |b

(c) G2, after closure and quotient

Figure 3: A real-time transducer transformed into a normalised transducer

Example 4. The matrix representation of G2 is:

I2 =
(
1 0 0

)
, E2 =

 0 (a, 1) (b, 1)
(1, a) (1, a) 0
(1, b) 0 (1, b)

 , T2 =

0
0
1

 ,

from which we compute:

F2 =

0 (a, 1) (b, 1)
0 0 0
0 0 0

 , G2 =

 0 0 0
(1, a) (1, a) 0
(1, b) 0 (1, b)

 , G∗
2 =

 (1, 1) 0 0
(1, a+) (1, a∗) 0
(1, b+) 0 (1, b∗)

 .

The transducer G′
2 = 〈 I2, G∗

2 · F2, G∗
2 · T2 〉 is shown at Figure 5 and it is easily seen

that G′′
2 = 〈 I2 · G∗

2, F2 · G∗
2, T2 〉 is equal to G1.
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1 |a+1 |b+

a |1b |1

b |a+

a |b+

a |a+b |b+

Figure 4: The real-time transducer G′
2

1.3 Representations of rational relations

Definition 5. Let A∗ and B∗ be two free monoids. A representation of A∗ into
Rat B∗ of dimension Q is a triple 〈 I, µ, T 〉 where µ : A∗ → (Rat B∗)Q×Q is a
morphism (hence entirely defined by the matrices µ(a) for a in A), and where I

and T are respectively row and column vectors in (Rat B∗)Q.

Theorem 6. A relation θ : A∗ → B∗ is rational if and only if there exists a repre-
sentation 〈 I, µ, T 〉 of A∗ into Rat B∗ which realises θ, that is, such that

∀w ∈ A∗ θ(w) = I · µ(w) · T .

Proof. If T = 〈 I, E, T 〉 is a real-time transducer, the matrix E defines the morph-
ism µ : A∗ → (Rat B∗)Q×Q by

E =
∑
a∈A

(a, 1)(1, µ(a)) (1.2)

that is,

∀a ∈ A , ∀p, q ∈ Q µ(a)p,q =

 Ka,p,q if p
a|Ka,p,q−−−−−−→

T
q

∅ otherwise ,

under the hypothesis, necessary for the writing T = 〈 I, E, T 〉 , that for every a in A

and every pair p, q in Q, there exists at most one transition in T which goes from p

to q and whose first component is a.
Conversely, a morphism µ : A∗ → (Rat B∗)Q×Q defines, via the same Equa-

tion (1.2), the adjacency matrix of a finite real-time transducer. By induction on
the length of the words w, it is then checked that:

∀w ∈ A∗ , ∀p, q ∈ Q µ(w)p,q = L ⇐⇒ L =
⋃ {

H

∣∣∣∣ p
w|H−−−−→

T
q

}
from which it follows that, for every w in A∗, θ(w) = I · µ(w) · T .

Example 7. The representations of the real-time transducers of Example 4 are the
following:

(a) I =
(
1 0 0

)
, µ(a) =

0 1 0
0 a 0
0 ab 0

 , µ(b) =

b 0 0
0 0 1
0 ba 0

 , T =

 1
a

ab

 ;
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(b) I =
(
1
)

, µ(a) =
(
a+

)
, µ(b) =

(
b+

)
, T =

(
1
)

;

(c) I =
(
1 0 0

)
, µ(a) =

a b 1
0 1 0
0 0 1

 , µ(b) =

b a 1
0 1 0
0 0 1

 , T =

A+

A∗

1

 .

2 Composition and evaluation theorems

The realisation of rational relations by representations allows to state a new com-
position theorem. The result in itself is not new, since we proved it already in
Lecture IV: the composition of two rational relations is a rational relation (The-
orem IV.25). But, at the same time, what we present here is more than a new proof.
This result is indeed now the consequence of another result: the composition of two
representations is a representation, which is new.

The idea is to generalise the composition of morphisms between free monoids
to representations. In Lecture IV, we had deduce the ‘evaluation theorem’ from
the closure under composition of rational relations. We now proceed the other way
around and establish the evaluation theorem first.

2.1 Evaluation Theorem

In the sequel of the section, 〈 I, µ, T 〉 is a representation of A∗ into Rat B∗ of
dimension Q, that is:

µ : A∗ → (Rat B∗)Q×Q is a morphism , I ∈ (Rat B∗)1×Q and T ∈ (Rat B∗)Q×1 .

Recall that any application extends additively, that is, if K ⊆ A∗ , then:

µ(K) =
∑

w∈K

µ(w) that is, ∀p, q ∈ Q µ(K)p,q =
⋃

w∈K

µ(w)p,q .

Proposition 8. If µ : A∗ → (Rat B∗)Q×Q is a morphism, then

K ∈ Rat A∗ =⇒ µ(K) ∈ (Rat B∗)Q×Q ,

that is, for every p and q in Q, µ(K)p,q belongs to Rat B∗ .

From which follows:

Corollary 9. If θ : A∗ → B∗ is a rational relation, then

K ∈ Rat A∗ =⇒ θ(K) ∈ Rat B∗ .
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Proof. If θ is a rational relation, then θ is realised by a representation 〈 I, µ, T 〉 and

θ(K) =
⋃

w∈K

θ(w) =
⋃

w∈K

I · µ(w) · T = I ·
( ⋃

w∈K

µ(w)
)

· T = I · µ(K) · T .

Proof of Proposition 8. (i) Let us recall first the theorem (see proof of Proposi-
tion I.17):

Theorem 10. Let M be a monoid and E a matrix of dimension Q×Q, the entries
of which are in P (M). Then, the entries of E∗ belong to the rational closure of the
entries of E.

(ii) Preparation. We check successively the ‘closure’ by union, product, and star:

µ(K) , µ(L) ∈ (Rat B∗)Q×Q =⇒ µ(K ∪ L) ∈ (Rat B∗)Q×Q (2.1)

since, for every p and q in Q, µ(K ∪ L)p,q = µ(K)p,q ∪ µ(L)p,q .

µ(K) , µ(L) ∈ (Rat B∗)Q×Q =⇒ µ(K L) ∈ (Rat B∗)Q×Q (2.2)

since, on one hand-side:

µ(K L) =
⋃

{µ(w) | w ∈ K L} =
⋃

{µ(uv) | u ∈ K , v ∈ L}

=
⋃

{µ(u) µ(v) | u ∈ K , v ∈ L}

=
(⋃

{µ(u) | u ∈ K}
) (⋃

{µ(v) | v ∈ L}
)

= µ(K) µ(L) ,

and, on the other, since Rat B∗ is a semiring, (Rat B∗)Q×Q is closed by product.
And, finally:

µ(K) ∈ (Rat B∗)Q×Q =⇒ µ(K∗) ∈ (Rat B∗)Q×Q (2.3)

since, by (2.1) and (2.2)
µ(K∗) = (µ(K))∗ ,

and Theorem 10 applies.
(iii) Proposition 8 is the consequence of the three equations (2.1), (2.2) and (2.3),

by induction on the depth of a rational expression which denotes K.

2.2 Composition of representations

Definition 11. Let µ : A∗ → (Rat B∗)Q×Q and ν : B∗ → (Rat C∗)R×R be
two morphisms. The composition of µ by ν is the map π = ν ◦ µ from A∗

to (Rat C∗)(Q×R)×(Q×R) , defined by the block decomposition:

∀w ∈ A∗ π(w)p×R,q×R = ν
(
µ(w)p,q

)
.
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Remark that this definition is built upon Proposition 8 in the sense that the
entries of π(w) are a priori in P (A∗) and it is the proposition that insures that they
are in Rat C∗.

Examples 12. (i) Definition 11 coincides with the definition of monoid morph-
isms composition, in the case where µ and ν are such morphisms.

(ii) If µ1(a) =
(

0 a

b 0

)
, µ1(b) =

(
b 0
0 b

)
and ν1(a) =

(
a 0
0 a

)
, ν1(b) =

(
0 b

a 0

)
,

then:

π1(a) =


0 0 a 0
0 0 0 a

0 b 0 0
a 0 0 0

 and π1(b) =


0 b 0 0
a 0 0 0
0 0 0 b

0 0 a 0

 .

Definition 11 is legitimate thanks to the following proposition:

Proposition 13. π = ν ◦ µ : A∗ → (Rat C∗)(Q×R)×(Q×R) is a morphism.

Proof. We want to prove that, for every u and v in A∗, it holds:

[ν ◦ µ](uv) = [ν ◦ µ](u) [ν ◦ µ](v) .

For every p and q in Q, it holds:

([ν ◦ µ](uv))p×R,q×R = ν
(
µ(uv)p,q

)
= ν

∑
r∈Q

(
µ(u)p,r µ(v)r,q

)
=

∑
r∈Q

ν
(
µ(u)p,r µ(v)r,q

)
=

∑
r∈Q

(
ν

(
µ(u)p,r

)
ν

(
µ(v)r,q

))
=

∑
r∈Q

([ν ◦ µ](u)p×R,r×R [ν ◦ µ](v)r×R,q×R)

= ([ν ◦ µ](u) · [ν ◦ µ](v))r×R,q×R .

Theorem 14. Let θ : A∗ → B∗ and σ : B∗ → C∗ be two rational relations, realised
by the representations 〈 I, µ, T 〉 and 〈 J, κ, U 〉 respectively. Then, σ ◦ θ : A∗ → C∗

is the rational relation realised by the representation 〈 K, π, V 〉, with:

π = ν ◦ µ , K = J · ν(I) and V = ν(T ) · U .

Proof.

∀w ∈ A∗ [σ ◦ θ](w) = σ(θ(w)) = σ(I · µ(w) · T )
= J · ν(I · µ(w) · T ) · U

= (J · ν(I)) · ν(µ(w)) · (ν(T ) · U) .
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Theorem 14 yields a new method of composition of transducers, by means of the
sequence of transformations:

transducer � real-time transducer � representation �
composition of representations � real-time transducer � transducer.

Example 15. The morphism ϕ1 : {a, b, c}∗ → {x, y}∗ defined by:

ϕ1(a) = x , ϕ1(b) = y x , ϕ1(c) = xy .

is realised by the representation 〈 1, ϕ1, 1 〉. The relation ϕ1−1 : {x, y}∗ → {a, b, c}∗

is realised by the real-time transducer below:

y |bx |c

x |1y |1
x |a

and then by the representation 〈 J1, κ1, U1 〉 where:

J1 =
(
1 0 0

)
, κ1(x) =

a c 0
0 0 0
1 0 0

 , κ1(y) =

0 0 b

1 0 0
0 0 0

 and U1 =

1
0
0

 .

The relation ϕ−1
1 ◦ ϕ1 : A∗ → A∗ is realised by the representation

〈 J1, κ1, U1 〉 ◦ 〈 1, ϕ1, 1 〉 = 〈 J1, π1, U1 〉 with π1 = κ1 ◦ ϕ1 , that is: π1(a) = κ1(x) ,

π1(b) = κ1(y x) =

b 0 0
a c 0
0 0 0

 and π1(c) = κ1(xy) =

c 0 ab

0 0 0
0 0 b

 ,

which corresponds to the real-time transducer below.

c |aba |c

a |1b |a

c |bb |c

a |a + b |b + c |c

Figure 5: A transducer for ϕ−1
1 ◦ ϕ1

3 Uniformisation of rational relations

As a first illustration of the realisation of rational relations by representations, we
establish a Rational Uniformisation Theorem.
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3.1 Uniformisation of a relation

The notion of uniformisation of a relation (and the terminology) comes from lo-
gic (more precisely from descriptive set theory). In these notes, it will be only a
definition that allows us to state a result.

If θ is any relation, from a set E into another set F , a function τ from E

to F uniformises θ (or is a uniformisation of θ ) if, for every e in the domain of θ ,
τ(e) is an element of θ(e) , that is:

Dom τ = Dom θ and ∀e ∈ Dom θ τ(e) ∈ θ(e) .

A uniformisation τ of a relation θ consists then in a choice function, a choice that
is repeated for every element of the domain of θ , in the selection of an element τ(e)
in each of the subsets θ(e) (cf. Figure 6).

Dom θ

θ(u)

τ̂

A∗u

B∗

τ(u)

θ̂

Figure 6: A uniformisation τ of a relation θ

Example 16. If θ is a relation from A∗ (From an arbitrary set E indeed) in
a free monoid B∗, the radix uniformisation2 is the function θrad which associate
with every element e of the domain of θ the smallest element, in the radix order,
of θ(e) .

Along the same lines, we can define the lexicographic selection θlex : it is the
function which associates with every element e of the domain of θ the smallest
element, in the lexicographic order, of θ(e) , if it exixts. As the lexicographic order
is not a well ordering, this minimum element does not necessarily exist and θlex is
not always a uniformisation, that is, it is a function the domain of which strictly
contained in the one of θ.

2If radix order is called, a tempting option, military order (the oldest in the highest rank), we
then get a military uniformisation...
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3.2 The Rational Uniformisation Theorem

After the definition of uniformisation, the problem consists in knowing whether it
is possible, when θ belongs to a certain family of relations, to define by selecting
for every e an element in θ(e), a uniformisation τ which belongs to that familiy
of relations, or to another given family of functions. The problem is solved for the
family of rational relations by the following result:

Theorem 17 (Eilenberg 1974). Every rational relation is uniformised by an unam-
biguous functional rational relation.

Proof. Recall that if A is an automaton over A∗ and Â is its determinisation, the
accessible part S of Â×A is a covering of A , called the Schützenberger covering
or S-covering of A , and that the projection πÂ of S onto Â is an In-morphism.
As a result we can, by eliminating some transitions, construct a sub-automaton T
of S , called an S-immersion of A , which is unambiguous and equivalent to A .

Let C be a real-time transducer which realises a relation θ (corresponding to
a representation 〈 I, µ, T 〉 of θ), A its underlying input automaton, and T an
S-immersion in A. Since T is an immersion in A each transition (r, a, s) of T
corresponds to a unique transition (p, a, q) in A and hence to a unique transition(

p, (a, µ(a)p,q), q
)

in C. If we choose, arbitrarily, a word w in µ(a)p,q , we construct
a transducer U by replacing each transition (r, a, s) in T by

(
r, (a, w), s

)
. Since T is

unambiguous, the relation τ realised by U is an unambiguous function, and since T
is equivalent to A it has the same domain as θ, and its graph is contained in that
of θ, by the choice of w.

Example 18. .— Let θ2 be the relation from {a, b}∗ into itself which replace in
every word one of its factor ab by the set b+a (and which is not defined on the
words that do not contain such a factor). Figure 7 shows a transducer E2 which
realises θ2 and whose underlying input automaton is A1 (on the left, verticaly),
its determinisation Â1 (horizontaly, at the top) and the result of the construction
decribed in the proof above. �

Since the only possible uniformisation of a function is the function itself, The-
orem 17 implies:

Corollary 19.
Every functional rational relation is an unambiguous rational relation.

4 Functional rational relations

The realisation by representation yields handy criteria for defining or characterising
classes of relations. The first class that we investigate from this point of view is the
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p

q

r

a |b+a

b |1B∗

a |a b |b

a |a b |b

{p} {p, q} {p, r} {p, q, r}a b a

b

b a b a

a |a

a |ba

b |b

a |b2a

b |1B∗

a |b3a
a |b4a

b |1B∗

a |a

b |b

a |a

b |b a |a b |b a |a

b |b a |a

Figure 7: The transducer E2 and a S-uniformisation of θ2

one of functional rational relations (which we also call rational functions, in spite of
the unfortunate collision with a classical terminology in mathematics).

Proposition 20. Let θ : A∗ → B∗ be a rational relation realised by a trim repre-
sentation 〈 I, µ, T 〉. If θ is a function, then all non zero entries of the matrices µ(a)
are words (monomials).

Theorem 21. It is decidable whether a rational relation is functional or not (with
a quadratic complexity).

Example 22. Figure 8 shows a transducer which realises a functional relation
(which is not so obvious at first sight).

a |x a |x4

a |x
a |x3

a |x3

a |x2

Figure 8: A functional transducer

Definition 23. A rational function is sequential (resp. co-sequential) if it is realised
by a row-monomial representation (resp. column-monomial representation), that is,
if the underlying input automaton of a real-time transducer which realises it is
deterministic (resp. co-deterministic).

Theorem 24. Every rational function is the composition of a sequential function
by a co-sequential function.
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5 Exercises

1. Apply the construction of the proof of Theorem 6 in order to build real-time transducers
from the two transducers below which realise the universal relation on {a}∗×{b}∗.

a |11 |b

(a) U1

1 |1
a |1 1 |b

(b) U2

2. Give a realisation by representation of the following relations:

(a) the complement of the identity; (b) the lexicographic order; (c) the radix
order.

3. Finite and infinite components of a rational relation. Let τ : A∗ → B∗ be a
relation. The finite and infinite components τf and τ∞ of τ are defined by:

τf(w) =
{

τ(w) if ‖τ(w)‖ is finite
∅ otherwise

et τ∞(w) =
{

∅ if ‖τ(w)‖ is finite
τ(w) otherwise

Show that if τ is rational, then τf and τ∞ are rational and effectively computable from τ .

4. Fibonacci reduction. Give a transducer which realises the composition of the relations
realised by the transducers below (the transducer on the left by the transducer on the right).

1 |a 1 |ab

a |1

b |1

a |ab

b |b a |a b |ba

1 |bb 1 |bb |1

a |aa

b |1

a |ab

b |b a |a

5. Choosing the uniformisation. Let A = {a, b, c} be a totally ordered alphabet, where
a < b < c , and let θ be the rational relation from A∗ into itself whose graph is:

θ̂ = (a, a)∗ (b, 1)∗ (1, b) ∪ (a, 1)∗ (b, a)∗ (1, c) .

Show that neither the radix uniformisation θrad nor the lexicographic selection θ lex are ra-
tional functions.
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Notation Index

� (action defined by the quotient), 60

0K (zero of the semiring K), 2
1K (identity of the semiring K), 2

A, B, . . . (automata), 5
A/ν (quotient of A by ν), 35
AL (minimal (Boolean) aut. of L), 34
A (behaviour of A), 6
Â (determinisation of A), 58
As (minimal automaton of s), 61
An (automaton with subliminal states), 37
〈 A, Q, I, E, T 〉 (Boolean, weighted aut.), 4
〈 A, Q, i, δ, T 〉 (deterministic Boolean aut.),

34
〈K, A, Q, I, E, T 〉 (weighted automaton), 5
A X=⇒ B (A conjugate to B by X), 43

B (Boolean semiring), 3

CA (set of computations in A), 6

Dom θ (domain of the relation θ), 74
dim V (dimension of the space V ), 63
δ(p, w) (transition in deterministic aut.), 34

〈〈〈G 〉〉〉 (submodule generated by G), 54

Im θ (image of the relation θ), 74
InA(p) (incoming bouquet), 38
iA (subliminal initial state), 37
ιK (intersection with K), 78

K (arbitrary semiring), 2
K〈〈A∗〉〉 (series over A∗ with coef. in K), 7
KQ×Q (matrices with entries in K), 2

L (characteristic series of L), 8

(d), 
(c) (label of a path, of a comput.), 6
|d|, |c| (length of a path, of a comput.), 6

µ ⊗ κ (tensor product of µ and κ), 28

N (semiring of non negative integers), 3
Nmax (semiring N, max, +), 3
Nmin (semiring N, min, +), 3
ν (Nerode equivalence), 35
ν ◦ µ (composition of µ by ν), 97

OutA(p) (outgoing bouquet), 38

p · w (transition in deterministic aut.), 34
ΦA (observation morphism), 61
ϕn (morphism from An to Bn), 38
ΨA (control morphism), 59

Q (semiring of rational numbers), 3
Q+ (semiring of non neg. rational numb.), 3

RA (reachability set of A), 57
RL (set of quotients of L), 34
Rs (set of quotients of s), 60
R (semiring of real numbers), 3
R+ (semiring of non neg. real numb.), 3
r(s) (rank of the series s), 63

〈s, w〉 (coefficient of w in s), 7
s � t (Hadamard product of s and t), 27

tA (subliminal final state), 37
T ◦ S (composition of T and S), 86
θ̂ (graph of the relation θ), 73
�θ (complement of the relation θ), 74
θlex (lexicographic selection of θ), 100
θrad (radix uniformisation of θ), 100

u−1L (quotient of L by u), 34

w(d), w(c) (weight of a path, of a comput.),
6

wl(d), wl(c) (weighted label of a path, of a
comput.), 6

w−1s (quotient of s by w), 59

X⊗Y (tensor product of X and Y ), 27
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Xϕ (amalgamation matrix), 43

Z (semiring of integers), 3
Zmax (semiring Z, max, +), 3
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General Index

a co-quotient, 44
accessible, 39
action, 52, 57, 59
addition

pointwise, 7
additivity, 74
algebra, 7
amalgamation matrix, 43
automaton

behaviour, 73
behaviour of –, 6
Boolean, 8
characteristic, 26
computation, 6

length, 6
conjugate, 43
controllable –, 59
dimension, 4
final function, 4
incidence matrix, 9
initial function, 4
morphism

bisimulation, 40
co-covering, 39
co-immersion, 39
co-quotient, 39
covering, 39
immersion, 39
In-bijective, 38
In-injective, 38
In-morphism, 39
In-surjective, 38
Out-bijective, 38
Out-injective, 38
Out-morphism, 39
Out-surjective, 38
quotient, 39
simulation, 40

observable –, 61
path, 5

label, 6
length, 6
w-label, 6
weight, 6

probabilistic, 27
proper, 77
Rabin and Scott, 81
state

subliminal final, 37
subliminal initial, 37

support, 8
transition

ε-transition, 38
incoming bouquet, 38
outgoing bouquet, 38
spontaneous, 38

unambiguous, 26
K-automaton, 4

backward closure, 77
bisimulation, 33

Cauchy product, see series
computation

successful, 73
conformal, 39
conjugacy, 33, 43
control morphism, 59
convergence

simple, 11
covering, 34

determinisation, 58
subset construction, 58

dimension
of an automaton, 4

echelon system, 67
elimination

Gaussian –, 67

field
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skew, 63
forward closure, 77

Gaussian elimination, 67
generating function, 26

Hadamard product, 27

identity
product-star, 16
sum-star, 16

In-morphism, 44
incidence matrix, 4

language
stochastic, 27

lateralisation, 33
length, 72

matrix
proper, 16
stochatic, 26
transfer, 43

Mealy machines, 72
minimal automaton, 34
module, 7
(left) module, 58
monoid

finitely generated, 22
of finite type, 22

Moore machines, 72
morphism

control –, 59
observation –, 61

morphism (of semirings), 3
multiplication

exterior, 7

Nerode equivalence, 35

observation morphism, 60
orbit, 52
Out-morphism, 33, 36, 44

polynomial, 8
power series, see series

locally finite family, 12
summable family, 12

quotient, 34, 44, see series

rational series, see series
reachability set, 57
regular,

seerepresentation53
relation

domain, 74
graph, 73
image, 74
rational, 75

representation
reduced, 63
right regular – of a monoid, 53

ring, 13, 20
division, 63

semiring, 2
commutative, 2
positive, 3, 8
strong, 20
topological semiring, 11

series, 7
Cauchy product of –, 7
characteristic, 8, 26
coefficient, 7
constant term of, 13
proper, 13
proper part of, 14
quotient of –, 59
rank, 63
rational, 14, 22
support, 8

stable, see submodule
state

final, 5
initial, 5

state-space, 58
states, 4
submodule

stable –, 62
subset construction, see determinisation

tensor product, 27
topology

dense subset, 12
product, 11

transducer
real-time, 101

transfer matrix, 43
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transitions, 4
translation

right –, 53
Turing machine, 81

vector space
dimension of –, 63

words
factors, 78
subwords, 78
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