
Lecture IV

Transducers (1)
The 2-tape Turing machine model

This part which spans over the last two lectures studies the model of finite automata
‘with output’ which are usualy called ‘transducers’. They can be seen as (finite)
automata over a direct product of free monoids as well as (finite) automata over a
free monoid with multiplicities in the (rational) subsets of another free monoid, or of
a direct product of free monoids. These two models are also equivalent to ‘one-way’
Turing machines with two or more tapes. In this lecture, we consider the first model
only, the second one is subject of the next lecture.

Contents
1 Definitions . 72

1.1 Transducers . 72
1.2 Word relations . 73
1.3 Rational relations . 74

2 Working on the model and examples 75
2.1 Normalisation . 75
2.2 Examples . 77
2.3 Extension . 79
2.4 Transducers as machines . 80

3 Some facts . 81
3.1 Intersection, complement 82
3.2 Equivalence . 82
3.3 Composition . 83

4 Undecidability results . 84
5 Composition and evaluation 86

5.1 The Composition Theorem 86
5.2 Two consequences . 88

6 Exercises . 88

71

2.16 – Finite automata based computation models MPRI 2018/2019

Automata ‘with output’ are a very natural, even a necessary, extension of auto-
mata that ‘read’ sequences of symboles. Since the dawn of automata theory (that
is, the second half of the fifties), kinds of such automata with output were studied:
Moore machines in which the sequences of states reached in the course of the reading
of a word are observed, Mealy machines in which an output letter is associated with
every transition. These two models are indeed equivalent up to some adjustment.
We start with a model which is strictly more general.

1 Definitions

In the sequel, A and B are two alphabets. The set A∗×B∗ of pairs (u, v) with u

in A∗ and v in B∗, equipped with the product:

(u, v) (u′, v′) = (uu′, v v′)

is a monoid, whose identity element is (1A∗ , 1B∗), most often denoted by (1, 1).
The length of an element of A∗×B∗ is the sum of the lengths of its components:
|(u, v)| = |u| + |v| . The monoid A∗×B∗ is graded (Definition I.32). Similarly,
A∗

1 ×A∗
2 ×· · ·×A∗

k , the set of k-tuples of words equipped with the componentwise
product is a graded monoid.

1.1 Transducers

Definition 1. A transducer is an automaton over A∗×B∗ or, more generaly, over
A∗

1×A∗
2×· · ·×A∗

k, that is, an automaton whose transitions are labelled with k-tuples
of words.

In (almost) all examples, k = 2. In the sequel, we also speak of ‘pairs’ rather
than of ‘k-tuple’, unless stated otherwise.

A transducer is thus implicitely here a Boolean automaton1 which can be de-
noted by T = 〈 A∗×B∗, Q, I, E, T 〉 where, as in the preceding lectures, Q is the
state set, I and T are the sets of initial and final states respectively and where
E ⊆ Q×(A∗×B∗)×Q is the set of transitions. Figure 1 shows four transducers.

We thus write p
(u,v)−−−−→ q for a transition and

c = p0
(u1,v1)−−−−−→ p1

(u2,v2)−−−−−→ p2 · · · pn−1
(un,vn)−−−−−−→ pn

for a computation of T . The label of a computation is the product of the labels of
its transitions and we write:

c = p0
(u1u2···un,v1v2···vn)−−−−−−−−−−−−−−→ pn .

1We could have defined weighted transducers but their study is somewhat more complex and we
need to know the theory of Boolean transducers first.

Work in Progress – 72 – 1st January 2019

Lecture notes Weighted Automata and Transducers

(a, a)

(b, b)

(a)

(a, 1) (b, 1)

(1, a) (1, b)

(b)

(a, b)

(b, a)

(c)

(a, a)

(b, b)

(b, b)
(a, a)

(a, 1)

(b, 1)

(d)
Figure 1: Four transducers

A computation is successful if its origin is an initial state and if its destination is a
final state. A pair of words (u, v) in A∗×B∗ is accepted by T if it is the label of a
successful computation of T . The behaviour of T , denoted by T , is the the set of
pairs of words accepted by T :

T =
{

(u, v) ∈ A∗×B∗
∣∣∣∣ ∃i ∈ I , ∃t ∈ T i

(u,v)−−−−→
T

t

}
.

Examples 2. The transducer of Fig.1(a) accepts the set of pairs (u, u) where u is
any word of {a, b}∗; the one of Fig.1(b) accepts the set of pairs (u, v) where u and v

are any words of {a, b}∗; the one of Fig.1(c) accepts the set of pairs (u, v) where u

is any word of {a, b}∗ and where v is obtained from u by replacing the a’s by b’s
and the b’s by a’s; the one of Fig.1(d) accepts the set of pairs (u, v) where u is any
word of {a, b}∗ and where v is obtained from u by replacing every block of a’s by a
unique a and every block of b’s by a unique b.

The behaviour of a transducer is thus a subset of A∗×B∗, that is, what we call
a relation between words, or a word relation.

1.2 Word relations

Relations A relation θ from A∗ to B∗ is written (with a slight abuse) θ : A∗ → B∗

and is defined by its graph θ̂ ⊆ A∗×B∗ . By definition, a relation from A∗ to B∗

associates with every word of A∗ a subset of B∗:

∀u ∈ A∗ θ(u) =
{

v ∈ B∗
∣∣∣ (u, v) ∈ θ̂

}
.

The underlying idea is that the first component of a pair (u, v) is an ‘input’ and
that the second component is the ‘output’. This point of view gives distinct roles to
the two components of the pair but does not break the symmetry between them.

Inverse Indeed, A∗ and B∗ play symmetric roles by the way of the graph of θ and
the inverse relation of θ,

θ−1 : B∗ → A∗ ,

Not to be circulated – 73 – 1st January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

is defined as the relation from B∗ to A∗ which has the same graph as θ, modulo the
canonical identification between A∗×B∗ and B∗×A∗:

∀v ∈ B∗ θ−1(v) =
{

u ∈ A∗
∣∣∣ (u, v) ∈ θ̂

}
.

Additivity By definition, a relation is extended by additivity:

∀L ⊆ A∗ θ(L) =
⋃

u∈L

θ(u)

and is thus viewed as an application from P (A∗) to P (B∗). Hence, the notion of
relation implicitely carries with itself the property of additivity.

A contrario, complementation for instance, which associates with every subset
of A∗ a subset of A∗, is not a relation from A∗ to itself.

Complement By definition, the complement of a relation θ : A∗ → B∗ is the
relation �θ : A∗ → B∗ whose graph is the complement in A∗×B∗ of the graph of θ:

�̂θ = �θ̂ that is, ∀u ∈ A∗ [
�θ

]
(u) = �B∗θ(u) .

Domain and image If θ : A∗ → B∗ is a relation, the domain and the image of θ

are the projections of θ̂ onto A∗ and B∗ respectively:

Dom θ =
{

u ∈ A∗
∣∣∣ ∃v ∈ B∗ (u, v) ∈ θ̂

}
and

Im θ =
{

v ∈ B∗
∣∣∣ ∃u ∈ A∗ (u, v) ∈ θ̂

}
.

Of course, Dom θ−1 = Im θ and Im θ−1 = Dom θ . It also holds u �∈ Dom θ if and
only if θ(u) = ∅ .

Generalisation to k-ary relations The relations of, or predicats on,
A∗

1×A∗
2×· · ·×A∗

k — called k-ary relations — are defined by their graphs, which are
subsets of A∗

1 ×A∗
2 ×· · ·×A∗

k . What has been said above of additivity, inherent to
the notion of relation, or of the complement of a relation, is naturally extended to
k-ary relations. There are many ways2 of ‘currying’ a relation of A∗

1×A∗
2×· · ·×A∗

k

and the other notions: domain, image, inverse have a meaning only with respect to
the way the ‘input’ and the ‘output’ components are chosen in the k-tuples elements
de A∗

1×A∗
2×· · ·×A∗

k. A natural generalisation is the one that could be denoted by
θ : A∗

1 → A∗
2×· · ·×A∗

k , where the input is a word of A∗
1 and the output a (k−1)-tuple

of words in A∗
2×· · ·×A∗

k.

2Properly speaking, ‘currying’ a function with several arguments consists in transforming it into
a one-argument function which returns a function over the rest of the arguments.

Work in Progress – 74 – 1st January 2019

Lecture notes Weighted Automata and Transducers

1.3 Rational relations

The behaviour of a transducer is a subset of a direct product of free monoids; a
transducer thus realises a relation, the one whose graph is the behaviour of this
tranducer. For instance, the transducer of Fig.1(a) realises the identity function,
the one of Fig.1(b) the universal relation. The Fundamental Theorem of Finite
Automata yields a first characterisation of the relations realised by finite transducers.
Let us first recall the definition of rational subsets, which holds in any monoid.

Definition 3. Rat A∗×B∗ is the smallest family of subsets of A∗×B∗ which contains
the finite subsets and which is closed under the operations of sum, product and star.

Let us recall also that a subset (of a monoid) is rational if and only if it is denoted
by a rational expression.

Definition 4. A relation θ : A∗ → B∗ is rational if so is its graph, that is, if
θ̂ ∈ Rat A∗×B∗ .

From the definition itself follows:

Property 5. The inverse of a rational relation is a rational relation.

The Fundamental Theorem of Finite Automata applied to transducers yields:

Theorem 6 (Elgot & Mezei 1965). θ : A∗ → B∗ is a rational relation if and only
if θ̂ = T where T is a finite transducer over A∗×B∗.

If the label of every transition of a transducer T is mapped onto its first (resp.
its second) component, one gets an automaton whose transitions are labelled by
words — possibly empty — and which accepts the domain (resp. the image) of the
relation realised by T . This implies the following.

Corollary 7. θ : A∗ → B∗ rel. rat. =⇒ Dom θ ∈ Rat A∗ , Im θ ∈ Rat B∗ .

2 Working on the model and examples

The converse implication of Theorem 6 can, and must, be made more precise. In
order to deal efficiently with transducers, it is convenient to have indeed a more
constrained definition that does not diminish the power of the model, and also to
be able to enrich it without making it more powerful.

2.1 Normalisation

The alphabet A freely ‘generates’ A∗ since every word of A∗ is the product of a
unique sequence of letters of A. The set (A×{1B∗ })∪ ({1A∗}×B) generates A∗×B∗

Not to be circulated – 75 – 1st January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

since every pairs in A∗×B∗ is the product of sequences of elements in (A×{1B∗ }) ∪
({1A∗}×B), but these sequences are not unique (in general):

(ab, bab) = (a, 1)(1, b) (1, a) (b, 1)(1, b) = (1, b) (a, 1)(b, 1)(1, a) (1, b) .

One can also take (A×{1B∗ }) ∪ ({1A∗}×B) ∪ (A×B) as generating set of A∗×B∗;
it allows to have shorter decomposition sequences:

(ab, bab) = (a, b) (b, a) (1, b) = (1, b) (a, a) (b, b) .

The automata over A∗ are defined with transitions labelled in A and it is known
that the model is not more powerful, that is, does not accept more languages, if one
allows labels in the whole A∗. For transducers, we follow a reverse process: they are
defined with transitions whose labels are taken in the whole A∗×B∗, and one shows
that the model is not less powerful, that is, does not accept fewer relations, if the
set of authorised labels is constrained.

Definition 8. (i) A transducer over A∗×B∗ whose labels are in
(A×{1B∗}) ∪ ({1A∗}×B) is called a normalised transducer.

(ii) A transducer over A∗×B∗ whose labels are in
(A×{1B∗}) ∪ ({1A∗}×B) ∪ (A×B) is called a subnormalised transducer.

The transducers (a), (c) and(d) of Figure 1 are subnormalised, the transducer (b)
is normalised.

Proposition 9.
Every transducer is equivalent to a normalised (or subnormalised) transducer.

Proof. The process for transforming an arbitrary transducer into a normalised (or
subnormalised) one is the same as in the case of automata over A∗ labelled with
words. It starts with the replacement of every transition whose label (u, v) is of
length � = |u|+|v| greater than 1 by � transitions labelled in (A×{1B∗ })∪({1A∗}×B)
or by k transitions labelled in (A×{1B∗}) ∪ ({1A∗}×B) ∪ (A×B), with k contained
between max(|u|, |v|) and �.

In order to get a normalised, or subnormalised, transducer, it is necessary to elim-
inate the transitions which are labelled with (1, 1), the identity element of A∗×B∗,
and whose presence is not ruled out by Definition 1. This elimination is the result
of a classical algorithm which can be described in a slightly more general frame-
work and which is worth to be explicitely given as it will be used later in an other
construction.

Let M be a monoid. An automaton over M is a graph whose transitions are
labelled with elements of M . Such an automaton is said to be proper if none of its
transitions are labelled with the identity element of M .

Work in Progress – 76 – 1st January 2019

Lecture notes Weighted Automata and Transducers

Theorem 10.
Every finite automaton over M is equivalent to a proper finite automaton.

Proof. Let A = 〈 M, Q, I, E, T 〉 be an automaton over M . We write: E = F ∪ S

where S is the set of spontaneous transitions of A, that is, the transitions labelled
with 1M . Without loss of generality, we assume that S is a transitive subgraph
of A: adding the transitions corresponding to the transitive closure of the set of
spontaneous transitions in A may indeed change the computations of A, but not
their labels. A computation of A is then of the form:

c = p0
m1−−−→ p1

m2−−−→ p2 · · · pn−1
mn−−−→ pn ,

and, thanks to the hypothesis on S, no two consecutive mi are both equal to 1M .
Let B = 〈 M, Q, J, G, T 〉 be the automaton defined by:

G = F ∪ {(p, m, r) | ∃q ∈ Q (p, m, q) ∈ F and (q, 1M , r) ∈ S} and
J = I ∪ {j | ∃i ∈ I (i, 1M , j) ∈ S}

which is then easily seen to be equivalent to A.

This construction completes the proof of Proposition 9.
This result is also interesting in that it allows the use of spontaneous transitions

for the construction of compact transducers as we see in the next series of examples.
Remark 11. The construction described in the proof of Theorem 10 can be called
a forward closure as the new transitions are built with the spontaneous transitions
that follow transitions labelled with elements different from the identity element.
Another proper automaton equivalent to A can obviously be built by means of a
dual backward closure.

2.2 Examples

Examples 12. (i) Universal relation, direct product of rational sets.
The universal relation, that is, the relation whose graph is the whole A∗×A∗,

is realised by the transducer of Figure 1(b). It is also realised by the transducer
below, in which every element of A∗×A∗ is the label of a unique computation (and
which demonstrates the benefit of spontaneous transitions).

(a, 1)

(b, 1)

(1, a)

(1, b)

(1, 1)

If K is a language of A∗, accepted by A, and L a language of B∗, accepted by B,
we transform A into a transducer A′ by replacing the label ‘a’ of every transition
by ‘(a, 1)’ and B into a transducer B′ by replacing the label ‘b’ of every transition
by ‘(1, b)’ respectively, as shown below.

Not to be circulated – 77 – 1st January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

a

A

(a, 1)

A′

b

B

(1, b)

B′

Figure 2: Transformation of automata into transducers

(a, 1)

A′

(1, b)

B′

(1, 1)

Figure 3: A transducer for K×L

The transducer of Figure 3 realises the relation whose graph is K×L.
(ii) Identity, morphisms. The identity, that is, the relation whose graph

is {(w, w) | w ∈ A∗}, is realised by the transducer of Figure 1(a). A morphism
ϕ : A∗ → B∗ is realised by the transducer below.

(a, ϕ(a))

(b, ϕ(b))

(iii) Intersection with a rational set. If K is a language of A∗, the intersec-
tion with K is a relation from A∗ into itself, denoted by ιK , and defined by:

∀w ∈ A∗ ιK(w) =

 w if w ∈ K

undefined (or ∅) otherwise .

If K is accepted by A, the relation ιK is realised by the transducer A′′ obtained
from A by remplacing the label ‘a’ of every transition by ‘(a, 1)’, as shown below.

a

A

(a, a)

A′′

Figure 4: A transducer for ιK

(iv) Factors, subwords. The relation from A∗ into itself which associates with
every word its factors is realised by the transducer shown at Figure 5(a); the one
which associates its subwords is realised by the transducer shown at Figure 5(b).

(vi) Operations on numbers written in base p. When a base p is chosen,
numbers (non-negative integers) are written3 on the alphabet Ap = {0, 1, . . . , p−1}
and operations on numbers are functions from A∗

p, or (A∗
p)2, or (A∗

p)3, etc. into A∗
p.

3When alphabets of digits are used, the empty word is written ε.

Work in Progress – 78 – 1st January 2019

Lecture notes Weighted Automata and Transducers

(a, 1)

(b, 1)

(a, a)

(b, b)

(a, 1)

(b, 1)

(1, 1) (1, 1)

(a)

(a, a) (b, b)

(a, 1) (b, 1)

(b)

Figure 5: Factors and subwords

Some are realised by finite transducers. Figure 6 shows the example of the (integer)
division by a fixed integer k, in the case where p = 2 and k = 3.

0 1 2
(1, 0)

(1, 1)

(0, 0)

(0, 1)

(0, 0) (1, 1)

Figure 6: Integer division by 3 of numbers written in binary

2.3 Extension

2.3.1 k-ary transducers

As mentioned in Definition 1, a transducer may be an automaton over a direct
product A∗

1 ×A∗
2 ×· · ·×A∗

k of k free monoids, not only an automaton over a direct
product A∗×B∗ of two free monoids. And as it has been mentioned as well, there
are multiple ways of ‘curryfying’ a relation over A∗

1×A∗
2×· · ·×A∗

k. From a theoretical
point of view, it may be interesting to see such a relation as a function from A∗

1 into
the subsets of A∗

2×· · ·×A∗
k. From a practical point of view, it is more common to see

the first k−1 components of a k-tuple as the ‘input’ and the k-th component as the
result, that is, to view the relation as a map from A∗

1×A∗
2×· · ·×A∗

k−1 into P (A∗
k).

Example 13. Product in A∗. The relation π : A∗ ×A∗ → A∗ which associates
with every pair of words their product: π(u, v) = uv for every u, v in A∗, is realised
by the transducer below.

(a, 1, a)

(b, 1, b)

(1, a, a)

(1, b, b)

(1, 1, 1)

Figure 7: A 3-ary transducer for the product of words

The notions of normalised or subnormalised k-ary transducers are defined in an
obvious manner and every k-ary transducer is equivalent to a normalised or subnor-
malised one (as is the transducer above if its spontaneous transition is eliminated).

Not to be circulated – 79 – 1st January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

It is useful to have this possible extension from 2 to k free monoids in mind but, as
already said, we almost exclusively consider transducers over A∗×B∗ in the sequel.

2.3.2 Left transducers, right transducers

A second variation on the model of transducers concerns the direction of reading.
When we wrote that the label of a computation is the product of the labels of the
transitions that make this computation (in an automaton or a transducer), it seemed
understood that this product be from left to right. This corresponds to the reading
from left to right in the machine model described in the next subsection. A reverse
convention would have been as justified. There are even cases — as is Example 14
below — for which it is more natural.

This problem may be solved by means of transposition. The transpose, or mirror
image, of a word w = a1 a2 · · · an is the word tw = an · · · a2 a1 ; the transpose of a
pair (u, v) is the pair (tu, tv). The transpose of an automaton, or of a transducer,
A = 〈 Q, I, E, T 〉, is the automaton, or the transducer, tA = 〈 Q, T, tE, I 〉, avec

tE =
{
(p, tx, q)

∣∣ (q, x, p) ∈ E
}

.

A word w is accepted by A in a right-to-left reading if and only if tw is accepted
by tA in a left-to-right reading. A word v belongs to the image of a word u in the
relation realised by a transducer A in a right-to-left reading if and only if tv belongs
to the image of tv par tA in a left-to-right reading.

In this way, it is seen that the inversion of the reading direction does not change
the power of the model and does not bring anything new (as far as we have the
transposition operator at hand). In some cases however, it may be simpler, more
convenient or natural, to consider transducers that read from right to left, for instance
when the transposed transducer is input deterministic as in Example 14 (what is
called right sequential transducer in the last lecture.

Example 14. Addition in base 2. Let A2 = {0, 1}. The map which associates
with every pair (u, v) of words of A2×A2, that are the binary representations of the
integers u and v, the binary representation of u + v is realised by the transducer of
Figure 8 when it reads pairs from right to left (which is the usual way to perform
addition indeed) and with the convention that the two words u and v are justified
on the right and that the shorter one is padded with a sufficient number of ‘0’ on the
left to be of the same length as the longer one and, finally, that a last ‘0’ is added
on the left to both words in order to allow a last transition toward the final state (if
necessary).

2.4 Transducers as machines

Modelling a finite Boolean automaton as a ‘1-way Turing machine’ leads naturally
to a generalisation of the model that features ‘several tapes’. The machine consists

Work in Progress – 80 – 1st January 2019

Lecture notes Weighted Automata and Transducers

(1, 0, 0), (0, 1, 0), (1, 1, 1) (0, 0, 0), (1, 0, 1), (0, 1, 1)

(0, 0, 1)

(1, 1, 0)

Figure 8: A 3-ary right transducer for the binary addition

of a finite state control unit and several tapes. The control unit is connected to
every tape by a reading head (cf. Figure 9).

At every step of the computation, the control unit ‘chooses’, according to its
state p, a tape on which it ‘reads’ and, depending on the symbol a read on the
tape, jumps in state q and moves the reading head on that tape to the next cell on
the right.4 As reading heads are moved always in the same direction, this type of
mahine is called 1-way Turing machine.

At the beginning of a computation, a word is written on each of the k tapes,
every reading head stays on the first cell of its tape and the control unit is in a
distinguished state called initial. After a succession of steps, a computation ends
if every reading head has reached on its tape the cell that contains the end-of-tape
symbol. The computation is successful if at the end of the computation the control
unit is in a state called final. A k-tuple of words is accepted by the machine if it
can be read by a successful computation.

p

Control unit

State

a1 a2 a3 a4 an $

b1 b2 b3 b4 bm $

k1 k2 k3 k4 kl $
Direction of movement of the k read heads

Figure 9: A k-tape 1-way Turing machine

Finite transducers over A∗×B∗ are strongly equivalent to 1-way 2-tape Turing
machines (1W2TTM) in the sense that for every transducer one can build such a
machine which is not only equivalent (that is, accepts the same pair of words) but
such that there is a bijection between their successful computations and vice versa.

4Other computation rules for such a device are possible. For instance, the choice of the read
tape and of the destination state may depend not only on the state p but also on the symbols read
on all tapes. All such definitions prove to be indeed equivalent.

Not to be circulated – 81 – 1st January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

The generalisation to transducers over A∗
1×A∗

2×· · ·×A∗
k and to 1-way k-tape Turing

machines is tedious but conceals no difficulties.

3 Some facts

We review a series of negative results concerning rational sets of direct products of
free monoids, hence rational relations. We end with an essential positive result that
will be developped in Section 5: the closure by composition of rational relations. In
the sequel, we call the finite transducers simply transducers.

3.1 Intersection, complement

In contrast with rational languages, rational relations are not closed under intersec-
tion and hence under complement.

Fact 15. R, S ∈ Rat A∗×B∗ �=⇒ R ∩ S ∈ Rat A∗×B∗ .

Example 16. The behaviours of transducers5 of Figure 10 are:

V1 = {(anbm, cn) | n, m ∈ N} and W1 = {(anbm, cm) | n, m ∈ N} .

Hence V1 ∩ W1 = {(anbn, cn) | n ∈ N} �∈ Rat {a, b}∗×{c}∗

since Dom (V1 ∩ W1) = {anbn | n ∈ N} �∈ Rat {a, b}∗ .

b |1

a |c b |1

︸ ︷︷ ︸
V1

b |c

a |1 b |c

︸ ︷︷ ︸
W1

Figure 10: Transducers V1 and W1 over {a, b}∗×{c}∗

Corollary 17. Rat A∗×B∗ is not closed under complement.

It holds nevertheless:

Proposition 18. The complement of the identity is a rational relation.

The proof reduces to the construction of the transducer of Figure 11 (and to the
verification that its behaviour is indeed the complement of the identity).

5From this example on, we write a | b instead of (a, b) for the labels of transitions, in order to
lighten notation.

Work in Progress – 82 – 1st January 2019

Lecture notes Weighted Automata and Transducers

a |b
b |a

A |11 |A

A |11 |A

a |a, b |b

A |A

A |11 |A

Figure 11: A transducer for the complement of the identity

3.2 Equivalence

A fundamental property of finite automata over a free monoid is that their equival-
ence is decidable, that is, there exists an algorithm which computes whether two
such automata accept the same language. This property does not extend to rational
relations.

Theorem 19 (Rabin & Scott 1959). Let R, S ∈ Rat A∗×B∗ , ‖A‖, ‖B‖ � 2 .
It is undecidable whether R ∩ S = ∅ or not.

It follows:

Theorem 20 (Fischer & Rozenberg 1968).
The equivalence of finite transducers is undecidable.

These two negative results are established in the next section. Their statements
leave open the status of the same questions in the cases where ‖A‖ � 2, ‖B‖ = 1
on one hand-side and ‖A‖ = ‖B‖ = 1 on the other. The first case exhibits an
interesting separation between the two above statements.

Theorem 21 (Gibbons & Rytter 1986).
Let R, S ∈ Rat {a, b}∗×{c}∗ . It is decidable whether R ∩ S = ∅ or not.

Theorem 22 (Ibarra 1978 – Lisovik 1979).
The equivalence of finite transducers over {a, b}∗×{c}∗ is undecidable.

The second case pertains to a completely different theory. It is noticed that
{a}∗×{b}∗ is isomorphic to N2, the free commutative monoid with two generators.
And it holds:

Theorem 23 (Ginsburg & Spanier 1966).
RatNk is an effective Boolean algebra, for every integer k.

The proof of these last three results exceeds the program of these lectures
(cf. EAT). We end this negative list with a positive result, not so much for cheering
up, but because we need it in the next section for the proof of undecidability results.

Not to be circulated – 83 – 1st January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

3.3 Composition

The composition of functions directly extends to the one of (2-ary) relations.

Definition 24. Let θ : A∗ → B∗ et σ : B∗ → C∗ two relations. The composition
of θ and σ is the relation

σ ◦ θ : A∗ → C∗ defined by ∀u ∈ A∗ [σ ◦ θ](u) = σ(θ(u)) .

The composition of relations can be defined (or expressed) by means of their graph:

σ̂ ◦ θ =
{

(u, w) ∈ A∗×C∗
∣∣∣ ∃v ∈ B∗ (u, v) ∈ θ̂ and (v, w) ∈ σ̂

}
.

Theorem 25 (Elgot & Mezei 1965).
The composition of two rational relations is a rational relation.

We come back to, and establish, this fundamental result in Section 5.

4 Undecidability results

The undecidable property par excellence is the ‘halting problem for a Turing ma-
chine’. But one can take as a basis any other propery already proved to be undecid-
able. The one we shall use in the sequel, because it is simpler to state, and easier
to deal with in connection with automata, is known as the ‘Post Correspondence
Problem’.

The Post Correspondence Problem (PCP)
Let B be an alphabet with at least two letters. Given an integer k and two sets

of k words of B∗: {u1, u2, . . . , uk} et {v1, v2, . . . , vk} , does there exist a sequence
of indices i1, . . . , ip in [k] such that

ui1ui2 · · · uip = vi1vi2 · · · vip ?

Theorem 26 (Post 1946). (PCP) is recursively undecidable.

This statement holds for the problem in full generality. If one looks for its status
according to the number k that allows to formulate an instance, the situation is
more complex. Let (PCPk) be the above problem in which the integer k is fixed. It
is known that (PCP2) is decidable and, since recently, that (PCPk) is undecidable
for k � 5 . The status of (PCPk) is still open for k equal to 3 or 4.

Translation in the vocabulary of Language and Automata Theory
The reason for our choice is that (PCP) can be easily expressed in terms of

morphisms between free monoids.

Work in Progress – 84 – 1st January 2019

Lecture notes Weighted Automata and Transducers

If U = {u1, u2, . . . , uk} is given, we write: Ak = {1, 2, . . . , k} , and

τU : A∗
k → B∗ for the morphism defined by τU (i) = ui for every i in [k] .

Similarly, if V = {v1, v2, . . . , vk} , we write: τV : A∗
k → B∗ the morphism defined

by τV (i) = vi for every i in [k]. A ‘sequence of indices’ is a word of A∗
k and (PCP)

is rephrased into:
does there exist a word w in A∗

k such that τU (w) = τV (w) ?
Theorem 26 then becomes:

Theorem 27. Let θ and µ : A∗ → B∗ be two morphisms.
It is undecidable whether there exists w in A∗ such that θ(w) = µ(w) or not.

Proof of Theorem 19. Let U and V be two sets of k words of B∗ which produce an
undecidable instance of (PCP) and τU : A∗

k → B∗ and τV : A∗
k → B∗ the corres-

ponding morphisms.
To state that it is undecidable whether there exists w in A∗

k such that τU (w) =
τV (w) is equivalent as to state that it is undecidable whether

τ̂U

⋂
τ̂V = ∅ ,

and τU and τU are rational relations (Example 16(ii)). It remains to show that
Theorem 19 holds for an alphabet A = {a, b} with two letters only.

Let κ : A∗
k → A∗ an injective morphism (defined, for instance, by κ(i) = aib).

By Theorem 25, τU ◦ κ−1 and τV ◦ κ−1 are rational relations and, since κ is injective,
it holds:

̂τU ◦ κ−1
⋂

̂τV ◦ κ−1 = ∅ ⇐⇒ τ̂U

⋂
τ̂V = ∅ .

Theorem 20 is a direct consequence of the following, more precise, statement.

Theorem 28. Let R ∈ Rat A∗×B∗ , ‖A‖, ‖B‖ ≥ 2 .
It is undecidable whether R = A∗×B∗ or not.

We first prove:

Lemma 29. Let θ : A∗ → B∗ be a functional rational relation. Then �θ : A∗ → B∗

is a rational relation.

Proof. Let χ be the complement of the identity on B∗, a rational relation by Pro-
position 18. We have:

�̂θ = [(A∗ \ Dom θ)×B∗] ∪ χ̂ ◦ θ .

The first term of the union is rational (Example 16(i)) and so is the second one by
Theorem 25.

Proof of Theorem 28. With the notation of the proof of Theorem 19, τU ◦ κ−1

and τV ◦ κ−1 are functional rational relations and it holds:

�
(

̂τU ◦ κ−1
) ⋃

�
(

̂τV ◦ κ−1
)

= A∗×B∗ ⇐⇒ ̂τU ◦ κ−1
⋂

̂τV ◦ κ−1 = ∅ .

Not to be circulated – 85 – 1st January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

5 Composition and evaluation

The closure by composition of rational relations (Theorem 25) is a fundamental
property, as is the consequence we deduce from it: the Evaluation Theorem (The-
orem 34).6 Together, they make of rational relations a powerful tool for the classi-
fication of formal languages. But above all, they give its consistency to the model
of transducers.

5.1 The Composition Theorem

Theorem 25 (Elgot & Mezei 1965).
θ : A∗ → B∗ , σ : B∗ → C∗ rat. rel. =⇒ σ ◦ θ : A∗ → C∗ rat. rel.

Proof. Let T = 〈 A∗×B∗, Q I, E, T 〉 and S = 〈 B∗×C∗, R, J, F, U 〉 be two
subnormalised transducers which realise θ and σ respectively. We define a composi-
tion product of transducers U = T ◦ S by:

U = 〈 A∗×C∗, Q×R, I×J, G, T ×U 〉 with

G =
{

(p, r) x|y−−−→ (q, s)
∣∣∣∣ ∃b ∈ B , ∃p

x|b−−−→ q ∈ E , ∃r
b|y−−−→ s ∈ F x ∈ A ∪ 1 , y ∈ C ∪ 1

}
⋃ {

(p, r) a|1−−−→ (q, r)
∣∣∣∣ ∃p

a|1−−−→ q ∈ E ∀r ∈ R

}
⋃ {

(p, r) 1|c−−−→ (p, s)
∣∣∣∣ ∃r

1|c−−−→ s ∈ F ∀p ∈ Q

}
.

By induction on the length of the computation, it is verified that:

(p, r) u|w−−−→
U

(q, s) if and only if ∃v p
u|v−−−→
T

q and r
v|w−−−→
S

s ,

which establish U = σ̂ ◦ θ.

This composition product may yield a transducer U with some transitions that
are labelled by 1 |1 (in the first group, when x and y are both equal to 1). These
spontaneous transitions are eliminated (by ‘backward’ or ‘forward’ closure, for in-
stance) in order to obtain a subnormalised transducer. In the sequel, it will be this
subnormalised transducer which will be denoted by U = T ◦ S.

Example 30 (trivial).

U1 = T1 ◦ S1

a |b

T1

b |c

S1

a |c

U1

6In the next lecture, we proceed in the reverse way: we first establish the Evaluation Theorem
from wich we deduce the Composition Theorem.

Work in Progress – 86 – 1st January 2019

Lecture notes Weighted Automata and Transducers

Example 31 (less trivial but still simple).

U2 = T2 ◦ S2

T2
a |a

a |b

b |b

b |b

S2

b |b

b |a

a |a a |a

U2

b |b

b |a

b |b

b |a

a |a a |a
a |b a |a

These two examples show ‘letter-to-letter transducers’. More general examples
will be considered in the exercises.

Remark 32. If we consider the normalised transducers T3 and S3 that are equivalent
to T1 and S1 respectively, a spontaneous transition appears in the course of the
construction of the composition product U3 = T3 ◦ S3. It is also important to note
that in this case also, the multiplicity of computations is not preserved. A more
elaborate construction (that is a more sophisticated composition product) allows to
overcome this problem.

U3 = T3 ◦ S3

T3
a |1

1 |b

S3
b |1

1 |c
1 |c

1 |c

a |1 a |11 |1 U3
1 |c

1 |c

a |1
a |1

Remark 33. It is possible to define (finite) transducers on direct products of non
free monoids and hence rational relations between non necessarily free monoids:
relations from M to N whose graph is in Rat M ×N .

Two such relations θ : M → N and σ : N → P can be then be composed. The
construction of the proof of Theorem 25 still holds true — and the composition is a
rational relation — as long as N is a free monoid B∗, but the composition may well
be a non rational relation if N is not a free monoid.

For instance, let θ : {a}∗ → a∗ ×b∗ be the morphism defined by θ(a) = (a, b)
and σ : a∗ × b∗ → {a, b}∗ the relation whose graph is σ̂ =

(
(a, 1), a

)∗(
(1, b), b

)∗ .
Then σ((an, bm)) = anbm holds and Im (σ ◦ θ) = {anbn | n ∈ N} . It follows that
σ ◦ θ : {a}∗ → {a, b}∗ is not a rational relation.

Not to be circulated – 87 – 1st January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

5.2 Two consequences

From Theorem 25 we deduce two important results: the Evaluation Theorem, and
a ‘restriction theorem’.

Theorem 34.
The image of a rational language by a rational relation is a rational language.

Proof. We want to prove: θ : A∗ → B∗ rational relation and K in Rat A∗ imply
that θ(K) is in Rat B∗. The following sequence of equalities holds.

θ(K) =
⋃

v∈K

θ(v) =
⋃

v∈K

{
w ∈ B∗

∣∣∣ (v, w) ∈ θ̂
}

=
{

w ∈ B∗
∣∣∣ ∃v ∈ K (v, w) ∈ θ̂

}
=

{
w ∈ B∗

∣∣∣ ∃u ∈ A∗ , ∃v ∈ K (u, v) ∈ ι̂ and (v, w) ∈ θ̂
}

= Im (θ ◦ ι)

This result can be seen as a particular case of the following statement which
contrasts with Fact 15.

Theorem 35. Let θ : A∗ → B∗ be a rational relation, K a rational language of A∗

and L a rational language of B∗. Then θ̂∩(K×L) is the graph of a rational relation.

Proof. It is easily verified that θ̂ ∩ (K×L) = ̂ιL ◦ θ ◦ ιK .

Remark 36. Theorem 35 can also be seen as a particular instance of a general result
on rational and recognisable subsets of non free monoids: the intersection of a rational
and of a recognisable subsets of an arbitrary monoid is a rational subset and K×L

is a recognisable subset of A∗×B∗.

6 Exercises

1. Orders. The alphabet A is totally ordered and this order is denoted by �.

The lexicographic order, denoted by �, extends the order on A to an order on A∗ and is
defined as follows. Let v and w be two words in A∗ and u their longest common prefix.
Then, v � w if v = u or, if v = uas, w = ub t with a and b in A, then a < b.

(a) Give a finite transducer over A∗×A∗ which realises �, that is, which asssociates with
every word u of A∗ the set of words which are equal to or greater than u.

The radix order (also called the genealogical order or the short-lex order), denoted by �, is
defined as follows: v � w if |v| < |w| or |v| = |w| and v � w.Beware. new

notation, but never
used! (b) Give a finite transducer over A∗×A∗ which realises �,

Work in Progress – 88 – 1st January 2019

Lecture notes Weighted Automata and Transducers

For every language L of A∗, we denote by minlg (L) (resp. Maxlg (L)) the set of words of L

which have no smaller (resp. no greater) words in L of the same length in the lexicographic
order.

(c) Show that if L is a rational language, so are minlg (L) and Maxlg (L).

2. Number representation.

Let A2 = {0, 1} and A3 = {0, 1, 2} be two alphabets of digits.

The alphabet A3 can be first considered as a non-canonical alphabet for the representation
of integers in base 2: 12 = 4, 201 = 9, etc.

Let ν2 : A∗
3 → A∗

2 be the normalisation in base 2, that is, the relation which associates with
a word of A∗

3 the word of A∗
2 which represents the same integer in base 2.

(a) Give a transducer which realises ν2. Comment.

Let ϕ : A∗
2 → A∗

3 be the function which maps the binary representation of every integer
onto its representation in base 3, e.g. ϕ(1000) = 22.

(b) Show that ϕ is not a rational relation.

3. Operation on numbers.

(a) Give a transducer which realises the multiplication by 9 on the integers written in
binary representation, that is, the relation τ : A∗

2 → A∗
2 such that τ(w) = 9 · w.

(b) Let µ : A∗
2 ×A∗

2 → A∗
2 be the relation which realises the multiplication, that is, such

that µ(u, v) = w where w = u · v .
Show that µ is not a rational relation.

4. Map equivalence of a morphism.

Let ϕ1 : {a, b, c}∗ → {x, y}∗ be the morphism defined by:

ϕ1(a) = x , ϕ1(b) = y x , ϕ1(c) = xy .

(a) Give a subnormalised transducer which realises ϕ1.

(b) Give a subnormalised transducer which realises ϕ1
−1.

(c) Compute a subnormalised transducer which realises ϕ1
−1 ◦ ϕ1.

5. Iteration lemma. Let θ : A∗ → B∗ be a rational relation.

(a) Show that there exists an integer N such that for every pair (u, v) in θ̂ whose length7

is greater than N , there exists a factorisation:

(u, v) = (s, t) (x, y) (w, z)

such that: (i) 1 � |x| + |y| � N and (ii) (u, v) = (s, t) (x, y)∗(w, z) ⊆ θ̂ .
7The length of a pair is the sum of the lengths of its components.

Not to be circulated – 89 – 1st January 2019

2.16 – Finite automata based computation models MPRI 2018/2019

(b) Show that the mirror function ρ : A∗ → A∗ :

ρ(a1 a2 · · · an) = an an−1 · · · a1 ,

is not a rational relation.

6. Conjugacy. Let Conj : A∗ → A∗ be the relation which associates with every word w

the set of its conjugates: Conj(w) = {v u | u, v ∈ A∗ uv = w} .

(a) Show that if L is a rational language, then so is Conj(L).

(b) Give a transducer which associates with every word w of {a, b}∗ the word obtained by
moving the first letter of w to its end.

(c) Compose this transducer with itself.

(d) Show that Conj is not a rational relation.

Work in Progress – 90 – 1st January 2019

Notation Index

� (action defined by the quotient), 60

0K (zero of the semiring K), 2
1K (identity of the semiring K), 2

A, B, . . . (automata), 5
A/ν (quotient of A by ν), 35
AL (minimal (Boolean) aut. of L), 34
A (behaviour of A), 6
Â (determinisation of A), 58
As (minimal automaton of s), 61
An (automaton with subliminal states), 37
〈 A, Q, I, E, T 〉 (Boolean, weighted aut.), 4
〈 A, Q, i, δ, T 〉 (deterministic Boolean aut.),

34
〈K, A, Q, I, E, T 〉 (weighted automaton), 5
A X=⇒ B (A conjugate to B by X), 43

B (Boolean semiring), 3

CA (set of computations in A), 6

Dom θ (domain of the relation θ), 74
dim V (dimension of the space V), 63
δ(p, w) (transition in deterministic aut.), 34

〈〈〈G 〉〉〉 (submodule generated by G), 54

Im θ (image of the relation θ), 74
InA(p) (incoming bouquet), 38
iA (subliminal initial state), 37
ιK (intersection with K), 78

K (arbitrary semiring), 2
K〈〈A∗〉〉 (series over A∗ with coef. in K), 7
KQ×Q (matrices with entries in K), 2

L (characteristic series of L), 8
�(d), �(c) (label of a path, of a comput.), 6
|d|, |c| (length of a path, of a comput.), 6

µ ⊗ κ (tensor product of µ and κ), 28

N (semiring of non negative integers), 3
Nmax (semiring N, max, +), 3
Nmin (semiring N, min, +), 3
ν (Nerode equivalence), 35

OutA(p) (outgoing bouquet), 38

p · w (transition in deterministic aut.), 34
ΦA (observation morphism), 61
ϕn (morphism from An to Bn), 38
ΨA (control morphism), 59

Q (semiring of rational numbers), 3
Q+ (semiring of non neg. rational numb.), 3

RA (reachability set of A), 57
RL (set of quotients of L), 34
Rs (set of quotients of s), 60
R (semiring of real numbers), 3
R+ (semiring of non neg. real numb.), 3
r(s) (rank of the series s), 63

〈s, w〉 (coefficient of w in s), 7
s � t (Hadamard product of s and t), 27

tA (subliminal final state), 37
T ◦ S (composition of T and S), 86
θ̂ (graph of the relation θ), 73
�θ (complement of the relation θ), 74

u−1L (quotient of L by u), 34

w(d), w(c) (weight of a path, of a comput.),
6

wl(d), wl(c) (weighted label of a path, of a
comput.), 6

w−1s (quotient of s by w), 59

X⊗Y (tensor product of X and Y), 27
Xϕ (amalgamation matrix), 43

Z (semiring of integers), 3
Zmax (semiring Z, max, +), 3

General Index

a co-quotient, 44
accessible, 39
action, 52, 57, 59
addition

pointwise, 7
additivity, 74
algebra, 7
amalgamation matrix, 43
automaton

behaviour, 73
behaviour of –, 6
Boolean, 8
characteristic, 26
computation, 6

length, 6
conjugate, 43
controllable –, 59
dimension, 4
final function, 4
incidence matrix, 9
initial function, 4
morphism

bisimulation, 40
co-covering, 39
co-immersion, 39
co-quotient, 39
covering, 39
immersion, 39
In-bijective, 38
In-injective, 38
In-morphism, 39
In-surjective, 38
Out-bijective, 38
Out-injective, 38
Out-morphism, 39
Out-surjective, 38
quotient, 39
simulation, 40

observable –, 61
path, 5

label, 6
length, 6
w-label, 6
weight, 6

probabilistic, 27
proper, 76
Rabin and Scott, 80
state

subliminal final, 37
subliminal initial, 37

support, 8
transition

ε-transition, 38
incoming bouquet, 38
outgoing bouquet, 38
spontaneous, 38

unambiguous, 26
K-automaton, 4

backward closure, 77
bisimulation, 33

Cauchy product, see series
computation

successful, 73
conformal, 39
conjugacy, 33, 43
control morphism, 59
convergence

simple, 11
covering, 34

determinisation, 58
subset construction, 58

dimension
of an automaton, 4

echelon system, 67
elimination

Gaussian –, 67

field

2.16 – Finite automata based computation models MPRI 2018/2019

skew, 63
forward closure, 77

Gaussian elimination, 67
generating function, 26

Hadamard product, 27

identity
product-star, 16
sum-star, 16

In-morphism, 44
incidence matrix, 4

language
stochastic, 27

lateralisation, 33
length, 72

matrix
proper, 16
stochatic, 26
transfer, 43

Mealy machines, 72
minimal automaton, 34
module, 7
(left) module, 58
monoid

finitely generated, 22
of finite type, 22

Moore machines, 72
morphism

control –, 59
observation –, 61

morphism (of semirings), 3
multiplication

exterior, 7

Nerode equivalence, 35

observation morphism, 60
orbit, 52
Out-morphism, 33, 36, 44

polynomial, 8
power series, see series

locally finite family, 12
summable family, 12

quotient, 34, 44, see series

rational series, see series
reachability set, 57
regular,

seerepresentation53
relation

domain, 74
graph, 73
image, 74

representation
reduced, 63
right regular – of a monoid, 53

ring, 13, 20
division, 63

semiring, 2
commutative, 2
positive, 3, 8
strong, 20
topological semiring, 11

series, 7
Cauchy product of –, 7
characteristic, 8, 26
coefficient, 7
constant term of, 13
proper, 13
proper part of, 14
quotient of –, 59
rank, 63
rational, 14, 22
support, 8

stable, see submodule
state

final, 5
initial, 5

state-space, 58
states, 4
submodule

stable –, 62
subset construction, see determinisation

tensor product, 27
topology

dense subset, 12
product, 11

transfer matrix, 43
transitions, 4
translation

right –, 53

Work in Progress – 94 – 1st January 2019

Lecture notes Weighted Automata and Transducers

Turing machine, 80

vector space
dimension of –, 63

words
factors, 78
subwords, 78

Not to be circulated – 95 – 1st January 2019

