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Lecture III

Reduction of weighted automata
Controllability and observability

Given a (finite) K-automaton over A∗, we want to build equivalent ones, hopefully
of smaller dimension. In this lecture, we base this construction upon the behaviour
of the automaton, in contrast with the preceding lecture where we have addressed
the same question by considering the structure of the automaton.
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We first define a process, that we call the universal determinisation process,
and that yields a possibly infinite automaton, but a deterministic one and with no
multiplicity on the transitions but in the final function. We then explain how to
work in that framework.

In the next section, we introduce the notion of quotient of a series, show a
characterisation of recognisable series in terms of quotients, and relate the quotients
with the previous construction.

Finally, we combine the two approaches to set up the theory for reduction in the
case where the multiplicity semiring is a field, or a subsemiring of a field, and turn
the theory into a polynomial algorithm.

As a preliminary, let us recall the main result of Lecture I: finite K-automata
over A∗ and K-representations of A∗ are one and the same thing and we use the most
convenient form; here, the representation. Before all, let us introduce the notion of
action that will be ubiquitous in that lecture.

1 Actions and representations

The notion of action is central in this lecture. We first define it and then describe
how it relates to the one of representation.

Contrary to what we have done in Lecture I (where we have defined K-automata
over free monoids and then extended the notion to K-automata over general (graded)
monoids), we first define actions of arbitrary monoids and then consider in the
following sections actions of free monoids only.

1.1 Action of a monoid on a set

Definition 1. Let S be a set — finite or infinite — and M a monoid. An action δ

of M on S is a map from S ×M to S, denoted by s · m rather than by δ (s, m) ,
which meets the two conditions:

∀s ∈ S s · 1M = s ,

∀s ∈ S , ∀m, m′ ∈ M (s · m) · m′ = s · (mm′) . (1.1)

The orbit of an element s of S under the action δ is the subset of S that can be
reached from s by the actions of all elements of M , that is, the set {s · m | m ∈ M} .

When necessary, we write s ·
δ

m in order to differentiate between two different
actions of a monoid or from the matrix product symbol.

Examples 2. (i) Permutation groups are examples of monoid actions; even
more, one may say that monoid actions are generalisation of permutation groups.
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(ii) Every monoid M defines an action on itself by multiplication on the right:

∀p, m ∈ M p · m = pm ;

this action is called the right translation or the (right) regular representation of M

over itself. It is denoted (when necessary) by ρ.
(iii) Likewise, every morphism α : M → N defines an action of M on N :

∀n ∈ N , ∀m ∈ M n · m = n (α (m)) . (1.2)

This map satisfies (1.1) because α is a morphism and multiplication in N is asso-
ciative. (The regular representation above corresponds to the identity morphism ι

from M onto itself.1)

Right and left actions The actions we have thus defined are right actions. We
could have defined in a dual manner a left action of M on S as a map from M ×S

to S that satisfies the conditions:

∀s ∈ S 1M · s = s ,

∀s ∈ S , ∀m, m′ ∈ M m′ · (m · s) = (m′ m) · s . (1.3)

Actions on structured sets An action of M on S is a morphism from M into
the monoid of maps from S into itself. If S has a structure (e.g.being a group, a ring,
etc.), we want an action to be a morphism from M into the monoid of endomorpisms
of S. In the sequel, S is a K-module and an action of M on S is ‘linear’:

∀s, t ∈ S , ∀m, m′ ∈ M (s + t) · m = s · m + t · m ,

∀k ∈ K (k s) · m = k (s · m) .

Examples 3. (i) A special case of Example 2(ii) is the regular representation
of A∗ over itself, which extends by linearity to an action of A∗ on the K-module K〈A∗〉,
and which we call the right translation by A∗.

(ii) Any K-representation (or morphism) µ : M → KQ×Q of dimension Q defines
an action of M on the (left) K-module KQ (on K1×Q, indeed), also denoted by µ:

∀x ∈ KQ , ∀m ∈ M x ·
µ

m = x · µ (m) . (1.4)

Since K is not supposed to be commutative, it is important to specify that K1×Q is
a left module.

1But is not denoted as such, as it is misleading to denote by ι a map which is not the identity.
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Action morphisms Let R and S be two structures (in the sequel, they will be
K-modules) and suppose that M acts on both R and S, by η and δ respectively.

A morphism α : R → S is an action morphism if

∀r ∈ R , ∀m ∈ M α (r) ·
δ
m = α

(
r ·

η
m

)
,

that is, if the following diagram is commutative (for every m in M).

R R

S S

α α

η

δ

r r ·
η
m

α(r) α
(
r ·

η
m

)
= α (r) ·

δ
m

α α

1.2 Actions and deterministic automata

If we distinguish an element s0 in S, that will play the role of an initial state, and
a subset T of S, that will play the role of the set of final states, any action δ of M

on S defines an automaton Aδ = 〈 M, S, {s0}, δ, T 〉 .
If M is a free monoid A∗, Aδ is a deterministic Boolean automaton. And con-

versely any (complete) deterministic Boolean automaton A over A∗ determines an
action of A∗ on the state set of A. If M is not a free monoid, the notion of actionexercice to be

written is indeed the way to generalise the one of deterministic automaton.
If we replace the subset T by a function T from S to K (the former being a func-

tion from S to B) the action δ, together with s0 and T , now defines a K-automaton,
which we call again deterministic in which the weight of every transition is 1K and
the final function is T . The behaviour of Aδ is then defined by 〈 Aδ , m〉 = T (s0 ·m)
for every m in M .

1.3 Closed sets

In this section, S is a (left) K-module (later, it will be K1×Q or K〈〈A∗〉〉). We first
take some notations that prove to be (very) convenient.

Notations for submodules Any finite subset G of S induces a morphim

αG : KG → S ,

whose image is 〈〈〈G〉〉〉, the sub(-K-)module of S generated by G:

∀x ∈ KG αG (x) =
∑
g∈G

xg g .

We also write
αG (x) = x · G
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which implicitely means that G is viewed as a column-vector of dimension G of
elements of S.

Conversely, let βG : 〈〈〈G〉〉〉 → KG be a map that performs, for every v in 〈〈〈G〉〉〉, a
choice of a decomposition of v over the elements of G and hence, for every v in 〈〈〈G〉〉〉:

αG (βG (v)) = v . (1.5)

Such a decomposition is not unique in general; that is, when G is not a basis of 〈〈〈G〉〉〉)
and βG (αG (x)) and x are not necessarily equal (but αG (βG (αG (x))) = αG (x)
holds.

It is natural, even though not necessary, to assume that for every g in G, βG (g) Is this alinea useful?

is the vector whose all entries are 0K but the g-th one which is 1K. In other words,
βG (G) is the identity matrix of dimension G.

Definition 4. Let S be a (left) K-module and δ a (right) action of A∗ on S. A
subset G of S is said to be δ-closed if the orbit of G is contained in 〈〈〈G〉〉〉, that is, if

∀g ∈ G , ∀w ∈ A∗ g ·
δ
w ∈ 〈〈〈G〉〉〉 ,

which amounts to say that 〈〈〈G〉〉〉 itself is closed, or stable, under the action of δ:

∀v ∈ 〈〈〈G〉〉〉 , ∀w ∈ A∗ v ·
δ
w ∈ 〈〈〈G〉〉〉 .

If v is in 〈〈〈G〉〉〉, there exists x in KG such that v = αG (x) = x · G and then:

v ·
δ
w = x ·

(
G ·

δ
w

)
.

1.4 Closed sets and representations

The core of this section is to show that an action on a finite closed set can be lifted
into a representation. We give indeed two versions of this construction: the lifting
of actions and the lifting of representations.

1.4.1 Lifting of actions

Proposition 5. Let S be a (left) K-module, δ a (right) action of A∗ on S and G a
finite subset of S.

If G is δ-closed, then there exists a K-representation κG (not necessarily unique)
of A∗ of dimension G such that αG is an action morphism between the action of A∗

on KG defined by κG and δ, that is, such that the following diagram commutes.

KG KG

S ⊇ 〈〈〈G〉〉〉 〈〈〈G〉〉〉 ⊆ S

αG αG

κG

δ (1.6)
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Proof. Let βG : 〈〈〈G〉〉〉 → KG be a fixed map defined as above. Since G is δ-closed, for
every g in G and every a in A, g ·

δ
a is in 〈〈〈G〉〉〉 and hence βG

(
g ·

δ
a

)
is in KG. Let κG

be defined by

∀a ∈ A κG (a) = βG

(
G ·

δ
a

)
,

that is, since we see G as a column-vector of dimension G, βG

(
G ·

δ
a

)
is a G×G-

matrix (with entries in K) the g-th row of which is βG

(
g ·

δ
a

)
. Hence every map βG

defines a representation κG, possibly distinct from the others.
If we instanciate diagram (1.6) for x in KG and a in A, it comes:

x x · κG (a) = x · βG

(
G ·

δ
a

)

x · G = αG (x) αG (x) ·
δ
a = x ·

(
G ·

δ
a

)αG αG

(1.7)

on which we read the following sequence of equalities:

αG (x) ·
δ
a = (x · G) ·

δ
a = x · (G ·

δ
a) as δ is K-linear.

(1.8)

On the other hand x · κG (a) = x · βG

(
G ·

δ
a

)
by definition

αG (x · κG (a)) = αG

(
x · βG

(
G ·

δ
a

))
= x · αG

(
βG

(
G ·

δ
a

))
as αG is K-linear,

= x · (G ·
δ
a) by (1.5). (1.9)

The equality between the right hand-sides of (1.8) and (1.9) expresses that the
diagram (1.6) commutes.

1.4.2 Lifting of representations

Let Q be any finite set. We study the preceding case when S = KQ and δ is the
action on KQ defined by a representation µ : A∗ → KQ×Q.

Let G be a finite subset of KQ. We denote by MG the G×Q-matrix (with entries
in K) the g-th row of which is the row-vector g of KQ. In this context, to say that G

is a column-vector amounts to say that G is in
(
K1×Q

)G×1
= KG×Q that is, that G

is the matrix MG = αG (Id), where Id is the identity matrix of dimension G.

Proposition 6. Let A = 〈 I, µ, T 〉 be a K-representation of A∗ of dimension Q.
Any finite subset G of KQ, that is µ-closed and that decomposes I, determines
(not uniquely) a K-representation 〈 J, κG, U 〉 of dimension G that is conjugate to A
by MG (hence equivalent to A).
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Proof. Let us come back to diagram (1.6) of Proposition 5:
KG KG

K1×Q ⊇ 〈〈〈G〉〉〉 〈〈〈G〉〉〉 ⊆ K1×Q

αG αG

κG

µ

If we replace in the proof of Proposition 5 the action δ by the action µ determined
by A and G by MG, it comes

G ·
δ
a = MG · µ (a) and ∀x ∈ KG αG (x) = x · MG .

The above diagram instanciated for Id and any letter a of A yields
Id κG (a)

MG MG · µ (a) = κG (a) · MG

αG αG

which shows that for every a in A, κG (a) is conjugate to µ (a) by MG.
Furthermore, to say that G decomposes I, that is, I ∈ 〈〈〈G〉〉〉, implies that there

exists J in KG such that I = αG (J) = J · MG . If we write U = MG · T , we have
built the K-representation we wanted.

2 Control

Starting from a K-automaton, we paradoxically begin our search for small equivalent
automata by the definition and idealistic constuction of two automata that are
infinite (in the general case). In this section, we start from the given automaton
itself, in the next one from its behaviour. In some sense, we thus begin with the
effective level as the (finite) automaton (or representation) is effectively given; since
the computations may lead to an infinite automaton, this effectivity is somewhat
relative. Linear algebra will then allow to fold these infinite automata into finite
ones, hopefully, and when possible, optimally.

For the rest of this section, A = 〈 I, µ, T 〉 is a K-representation of A∗, of di-
mension Q.

2.1 The reachability set

The representation A, the morphism µ indeed, determines an action of A∗ on KQ,
called µ again, by

∀x ∈ KQ x ·
µ

w = x · µ (w) .

Definition 7. The reachability set RA of A is the orbit of I under the action µ:

RA = {I · µ (w) | w ∈ A∗} .

This set RA may well be, and in general is, infinite.
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Determinisation The set RA is closed under the action µ and this action of A∗

on RA can be seen as a deterministic automaton, denoted by Â, and called the
determinisation of A as it is defined by A:

Â =
〈

A, RA, {I}, µ, T̂
〉

.

Its transitions are defined by: [I · µ (w)] ·
µ

a = I · µ (w) · µ (a) = I · µ (w a) and its
final function by: T̂ (x) = x · T . The automaton Â, a priori infinite, is equivalent
to A.

Example 8. Let A2 and A3 be the N-automata over a∗ of dimension 1 and 2 defined
by A2 =

〈 (
1
)
,

(
2
)
,

(
1
) 〉

and by A3 =
〈 (

1 0
)
,

(
1 1
0 2

)
,

(
1
1

) 〉
respectively. Their

determinisations are shown at Figure 1. The determinisation of B1 (cf.Example I.3)
is shown at Figure 2.

a |2A2
(1) (2) (4) (8)

2 4 8

a |1 a |1 a |1 Â2

a |1
a |1 a |2

A3 (
1 0

) (
1 1

) (
1 3

) (
1 7

)

2 4 8

a |1 a |1 a |1 Â3

Figure 1: Two (equivalent) N-automata and their (equal) determinisations

b

a + b a + bB1 (
1 0

) (
1 1

) (
1 2

) (
1 3

)

1 2 3

b b b

a a a a B̂1

Figure 2: The determinisation of the N-automaton B1

The Boolean case The use of the word determinisation, as in the case of clas-
sical Boolean automata, is not a coincidence: if K = B the construction we have
described is the so-called subset construction. Every Boolean vector of BQ can be
identified with a subset of Q , and conversely. The initial state I is the set of initial
states of A, and (I · µ (w)) · µ (a) is the set of states reached by the letter a from
the set of states I · µ (w).

2.2 The state-space

So far, KQ, and thus RA, have been considered as sets without any structure. We
now bring into play the fact that KQ = K1×Q is a (left) module over K.

Work in Progress – 58 – 13 December 2018



Lecture notes Weighted Automata and Transducers

Definition 9. We call state-space of A the K-module KQ.

Definition 10. We call control morphism of A the morphism of K-modules ΨA:

ΨA : K〈A∗〉 −→ KQ ,

defined by ΨA (w) = I ·µ (w) for every w in A∗ and extended to K〈A∗〉 by linearity.

With these definition and notation, it holds:

RA = ΨA (A∗) and Im ΨA = ΨA (K〈A∗〉) = 〈〈〈RA 〉〉〉 .

and the following statement is almost a tautology.

Proposition 11. The control morphism ΨA is an action morphism from the right
translation by A∗ on K〈A∗〉 to the action µ of A∗.

K〈A∗〉 K〈A∗〉

KQ KQ

ΨA ΨA

ρ

µ

w w a

I · µ (w) I · µ (w) · µ (a)

ΨA ΨA

Figure 3: The control morphism is a morphism of actions

Definition 12. A K-representation (or K-automaton) A is said to be controllable2

if ΨA is surjective.

The automaton A is controllable if for every point in the state space, there exists
at least one linear combination of input that leads A to that point.

3 Observation

We now define a third action of A∗, on K〈〈A∗〉〉 this time. It allows to characterise
recognisable series and to associate with every such series a minimal deterministic
automaton.

3.1 Quotient of series

The quotient of a series is the generalisation to series of the quotient of a subset of
a monoid (of a free monoid in this case).

2commandable in French.
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Definition 13. Let s be in K〈〈A∗〉〉 and w in A∗. The (left) quotient of s by w is
the series denoted by w−1s and defined by:

w−1s =
∑

v∈A∗
〈s, w v〉v , that is, ∀v ∈ A∗ 〈w−1s, v〉 = 〈s, w v〉 . (3.1)

In particular, ∀w ∈ A∗ 〈w−1s, 1A∗〉 = 〈s, w〉 . (3.2)

For every w, the operation s �→ w−1s is an endomorphism of the K-module K〈〈A∗〉〉:
it is additive:

w−1(s + t) = w−1s + w−1t ,

and commutes with the exterior multiplications of K on K〈〈A∗〉〉:

w−1(k s) = k (w−1s) and w−1(sk) = (w−1s)k .

Moreover, it is continuous. These three properties ensure that the quotient by w is
entirely defined on K〈〈A∗〉〉 by its values on A∗.

The associativity of concatenation implies then that

∀u, v ∈ A∗ (uv)−1s = v−1
[
u−1s

]
,

that is, thanks to the preceding properties:

Proposition 14. The (left) quotient is a (right) action of A∗ on the (left) K-
module K〈〈A∗〉〉.3

The orbit of a series s under the quotient action is denoted by Rs:

Rs =
{

w−1 s
∣∣∣ w ∈ A∗}

.

Example 15. Let s2 = (a∗)2 =
∑

n∈N(n + 1)an in NRat a∗. For every integer k, it
holds:

(ak)−1s2 =
∑
n∈N

(k + n + 1)an = s2 + k a∗ .

All quotients of s2 are distinct and Rs2 = {s2 + k a∗ | k ∈ N}.

Example 15 shows that, in general, and in contrast with the case for (recognis-
able) languages, the family of quotients of a rational, and thus recognisable, series
is not necessarily finite. On the other hand, and despite its simplicity, it exhibits
the property that we seek: there are infinitely many quotients, but they can all be
expressed as the linear combination of a finite number of suitably chosen series.

3.2 The minimal deterministic automaton

Let again A = 〈 I, µ, T 〉 be a K-representation of A∗, of dimension Q.
3In diagrams, the quotient action will be denoted by �.
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Observability

Definition 16. We call observation morphism of A the morphism of K-modules
ΦA : KQ −→ K〈〈A∗〉〉 defined by:

∀x ∈ KQ ΦA (x) = 〈 x, µ, T 〉 =
∑

w∈A∗
(x · µ (w) · T )w .

The definition of quotient (Equation (3.1)) directly implies that if s = 〈 I, µ, T 〉 ,
then, for every w in A∗, w−1s = 〈 I · µ (w) , µ, T 〉 , that is:

Property 17. For every w in A∗, and every x in KQ, w−1ΦA (x) = ΦA (x · µ (w)).

In other words:

Proposition 18. The observation morphism ΦA is an action morphism from the
action µ of A∗ on KQ to the quotient action of A∗ on K〈〈A∗〉〉.

KQ KQ

K〈〈A∗〉〉 K〈〈A∗〉〉

ΦA ΦA

µ

�

x x · µ (w)

ΦA (x) = t w−1t = ΦA (x · µ (w))

ΦA ΦA

Figure 4: The observation morphism is a morphism of actions

From Property 17 also follows:

Property 19. Rs = ΦA (ΨA (A∗)) = ΦA (RA) .

Definition 20. A K-representation (or K-automaton) A is said to be observable
if ΦA is injective.

That is, A is observable if no two distinct starting points in the state-space yield
the same behaviour for A.

The minimal automaton The set Rs is closed under the quotient action and
this action of A∗ on Rs can be seen as a deterministic automaton, denoted by As:

As = 〈 A, Rs, {s},�, c 〉 .

Its transitions are defined by

[w−1s] � a = a−1w−1s = (w a)−1s ,

its unique initial state is s, and its final function c maps every state w−1 s to its
constant term, that is, c

(
w−1s

)
= 〈w−1s, 1A∗〉 = 〈s, w〉 .
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The automaton As, a priori infinite, is equivalent to A: every word w labels a
unique path with multiplicity 1K from the initial state s to the state w−1 s and the
final function gives that computation the weight 〈s, w〉 by definition.

If s is a B-series, that is, if s is a language L, then AL is the minimal automaton
of L. The well-known relation between the determinisation of an automaton and
the minimal automaton of the recognised language generalises to series.

Strictly writing, we have defined Out-morphisms and quotients for finite (K)-
automata only but in the same way we have defined the weight of a word for finite
automata and noted that it could be defined for infinite deterministic automata
(Note I.3, p.6), Out-morphisms and quotients are easily defined also for infinite
deterministic K-automata since the definition coincide with the one for finite de-
terministic automata: two states can be merged if they have the same transitions
to the other (merged) states, and give the final function the same value.

Proposition 21. Let s be a K-recognisable series and A any finite K-automaton
that realises s. Then As is the minimal quotient of Â.

Proof. By Property 19, we already know that Rs = ΦA (RA). Stating that ΦA is a
morphism of actions is exactly the same thing as saying that ΦA is an Out-morphism
between the deterministic automata induced by these actions, here, from Â onto As.

Conversely, every state of As corresponds to the series that is accepted by this
state taken as the initial state. Thus, two distinct states of As cannot be mapped by
a morphism onto the same state of a proper quotient since they would correspond
to the same series.

3.3 Stability

The notion of quotient allows an intrinsic characterisation of recognisable series, via
the one of stability.

Definition 22. A subset U of K〈〈A∗〉〉 is called stable if it is closed under quotient;
that is, for every s in U and every w in A∗, w−1s is in U .

Theorem 23 (Fliess–Jacob). A series of K〈〈A∗〉〉 is K-recognisable if and only if it
is contained in a stable finitely generated submodule of K〈〈A∗〉〉.

Proposition 24. If s is a series realised by A, then Im ΦA is a stable (finitely
generated) submodule of K〈〈A∗〉〉 that contains s.

Proof. The submodule Im ΦA is finitely generated since KQ is, is stable since ΦA is
a morphism of actions, and contains s = ΦA (I) .

Proposition 25. Let U be a stable submodule of K〈〈A∗〉〉 generated by a finite set G.
Then, every series in U is realised by a K-representation of dimension G.
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Proof. Proposition 5, applied to the case where S = K〈〈A∗〉〉 and δ is the quotient,
yields a K-representation κG of dimension G. Every g in G is a series in K〈〈A∗〉〉; let
us denote by T = 〈G, 1A∗ 〉 the (column) vector whose g-th entry is 〈g, 1A∗ 〉.

If a series s is in U , there exists an x in KG such that s = x · G . By definition
of κG, for every w in A∗, w−1s = x · κG (w) · G and then

〈s, w〉 = 〈w−1s, 1A∗〉 = 〈x · κG (w) · G, 1A∗〉 = x · κG (w) · 〈G, 1A∗〉 = x · κG (w) · T .

Hence s is realised by 〈 x, κG, T 〉.

Propositions 24 and 25 together prove Theorem 23.

4 Reduction of representations in a field

We now suppose that K is a field, not necessarily commutative, hence a skew field,
or division ring. The preceding considerations about quotients of series will take
on, we might say, a new dimension since the ring of series K〈〈A∗〉〉 is not only a
K-algebra, but a (left) K-vector space, and the dimension of subspaces will give us
a new invariant.

We use the notion of dimension essentially via two results:

• Every submodule V (called subspace) of a vector space is given a dimen-
sion dim V and if V ⊆ V ′, and dim V = dim V ′ finite, then V = V ′.

• From every generating set G of a subspace V of finite dimension one can
effectively extract a basis, that is a free generating set of V .

For the rest of this section, K is a division ring.

4.1 Rank of a series

Definition 26. The rank r(s) of a series s of K〈〈A∗〉〉 is the dimension of the subspace
of K〈〈A∗〉〉 generated by Rs the set of (left) quotients of s:

r(s) = dim 〈〈〈Rs 〉〉〉 .

In this setting, and with no further ado, Theorem 23 becomes:

Theorem 27. A series s of K〈〈A∗〉〉 is recognisable if and only if r(s) is finite.

Let A be a K-representation of dimension n that realises s.4 From Property 19
follows that r(s) is smaller than, or equal to, dim(Im ΦA) which is smaller than, or
equal to, n. Hence the minimal dimension of a representation for s is r(s).

4In this context where we compare dimensions, it is more convenient they be integers rather
than sets.
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Definition 28. A representation of a recognisable series s is reduced if its dimension
is equal to the rank of s.

From Proposition 25 follows that reduced representations do exist since we have:

Property 29. With every basis of 〈〈〈Rs 〉〉〉 is associated a reduced representation of s.

Conversely, reduced representations are characterised by the following statement.

Theorem 30. A K-representation A is reduced if and only if it is both controllable
and observable, that is, if and only if ΨA is surjective, and ΦA injective.

Proof. Let s be the series realised by A. The morphism

ΦA ◦ ΨA : K〈A∗〉 −→ K〈〈A∗〉〉 is such that [ΦA ◦ ΨA](w) = w−1s

for every w in A∗ and Im [ΦA ◦ ΨA] is the subspace 〈〈〈Rs 〉〉〉. For the dimension of
Im [ΦA ◦ ΨA] be equal to n, the dimension of A, it is necessary, and sufficient, that
the dimension of both Im ΨA and Im ΦA be equal to n. The second equality holds
if and only if the dimension of Ker ΦA is zero.

4.2 Reduction of a representation

It is not enough to know that reduced representations exist and to characterise
them. We want to effectively compute them and, for that purpose, we establish the
following.

Theorem 31. A reduced representation of a recognisable series s is effectively com-
putable from any representation that realises s with a procedure whose complexity is
cubic in the dimension of the representation.

For the rest of this section, let A be a K-representation of A∗ of dimension n,
that realises the series s = A . Let us first assume that, given A, one can effectively
compute a basis of the subspace Im ΨA (this will be proved in the next subsection,
where the complexity of the whole procedure will be established as well).

Proposition 32. Let G be a basis of the state-space Im ΨA, of cardinal m. This
basis determines a K-representation A′ of dimension m, conjugate to A, and with
the properties:

(i) ΨA′ is surjective (A′ is controllable);
(ii) if ΦA is injective, so is ΦA′ (if A is observable, so is A′).

Proof. By Proposition 6 and with the notation set there, the existence of G, generat-
ing set of Im ΨA of cardinal m, implies the one of a K-representation A′ = 〈 J, κG, U 〉
of dimension m which is conjugate to A = 〈 I, µ, T 〉 by MG, that is, such that:

I = αG (J) = J · MG , ∀a ∈ A κG (a) · MG = MG · µ (a) , U = MG · T .
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Since G is a basis, dim(Im ΨA) = dim(KG) = m and αG is injective. The diagram of
Figure 5, that will be shown to commute, helps in following the next sequences of
equalities.

K〈A∗〉

KQ KG

K〈〈A∗〉〉

ΨA

ΦA

ΨA′

ΦA′

αG

Figure 5: A diagram for Proposition 32

For every w in A∗, it then comes:

ΨA (w) = I · µ (w) = αG (J) · µ (w) = J · MG · µ (w)
= J · κG (a) · MG = αG (J · κG (a)) = αG (ΨA′ (w)) .

Hence ΨA = αG ◦ΨA′ . Since dim(Im ΨA) = m and αG is injective, dim(Im ΨA′) = m

and ΨA′ is surjective.
Let x in ΨA′ (A∗), that is, there exists w in A∗ such that x = ΨA′ (w).

Then ΦA′ (x) = ΦA′ (ΨA′ (w)) = w−1s .
On the other hand, ΦA (αG (ΨA′ (w))) = ΦA (ΨA (w)) w−1s , and then

ΦA′ (x) = ΦA (αG (x)) . (4.1)

Since ΨA′ (A∗) generates KG, (4.1) holds on the whole space KG and ΦA′ = ΦA ◦αG .
Since αG is injective, if ΦA is injective, so is ΦA.

We now introduce the transpose of the representation A, At = (T t, µt, It) where
µt (a) = (µ (a))t for every a in A and it comes µt (w) = (µ (wt))t for every w in A∗.
We then have the following connection between A and At.
Remark 33. The use of the transpose of a K-representation is not satisfactory as it
is not well-defined when K is not commutative, a case that we want to cover. On
the other hand , it is an easy shortcut, as it save the definition the dual of every
notion we have defined so far (state-space, control morphism, etc.). It is enough to
say that it is legitimate for the case where K is commutative, which holds in all the
forthcoming examples and exercices and that there exists a method to overcome the
problem when needed (as in the case of Corollary 43 for instance).

Lemma 34. If ΨAt is surjective, then ΦA is injective.

Proof. If ΦA (x) = 0 then x · µ (w) · T = 0 for every w in A∗ and x belongs to the
orthogonal of the subspace generated by the vectors {µ (w) · T | w ∈ A∗} which is
of dimension n by hypothesis: thus x = 0 .
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Proof of Theorem 31. Starting from a representation A, we first compute a basis
for the state-space of At which determines a representation A′t such that ΨA′t is
surjective, and thus by Lemma 34, ΦA′ is injective. We then compute a basis for the
state-space of A′ which determines a representation A′′ such that ΨA′′ is surjective
and ΦA′′ is injective: A′′ is reduced.

The proof of Theorem 31 will be complete when we have proved that basis for
the state-spaces are effectively computable (with the ascribed complexity).

4.3 Effective computations

Word basis

Definition 35. We call word basis for A a prefix-closed subset P of A∗ such that
the set ΨA (P ) = {I · µ (p) | p ∈ P} is a basis of Im ΨA .

Proposition 36. Word basis for A do exist.

Proof. If I = 0, Im ΨA is the null vector space, of dimension 0 and the empty set
(which is prefix-closed!) is a word basis. Assuming that I is non-zero, the family of
prefix-closed subsets P of A∗ such that {I · µ (p) | p ∈ P} is a free subset of Kn is
not empty since it contains at least the singleton {1A∗} . Every such subset contains
at most k = dim(Im ΨA) elements and there exist thus maximal elements (for the
inclusion order) in that family.

It remains to show that such a maximal element P is a word basis, that is,
ΨA (P ) generates Im ΨA . By way of contradiction, let w in A∗ such that I ·µ (w)
does not belong to 〈〈〈ΨA (P ) 〉〉〉 ; the word w factorises in w = pg , with p in P , and
we choose w in such a way that g is of minimal length. The word g is not empty:
g = ah , with a in A, and I · µ (w) = I · µ (pa) · µ (h) . As P is maximal, I · µ (pa)
belongs to 〈〈〈ΨA (P ) 〉〉〉 that is, I · (pa)µ =

∑
pi∈P

xi (I · µ (pi)) . It then follows

I · µ (w) =

 ∑
pi∈P

xi (I · µ (pi))

 · µ (h) =
∑

pi∈P

xi (I · µ (pih)) .

By the minimality of g, every I · µ (pih) belongs to 〈〈〈ΨA (P ) 〉〉〉 : contradiction.

In the sequel, we do not consider the trivial case I = 0 anymore.

If P is a non-empty prefix-closed subset of A∗, the border of P is the set:

C = P A \ P .

As an example, the prefix-closed subset {1A∗ , b, ba} and its border {a, bb, baa, bab}
are shown in Figure 6.

The following proposition and its proof exhibit the computation underlying Pro-
position 32.
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1A∗

a b

ba

baa bab

bb

Figure 6: A prefix-closed subset and its border

Proposition 37. Word basis for A are effectively computable, with complexity
O(dn3), where d is the cardinal of A.

Proof. We set P0 = {1A∗} and C0 = ∅ . The algorithm to compute a word basis P

can be written in the following manner.
If Ek = (Pk A \ Pk) \ Ck is non-empty, choose an arbitrary w in Ek and decide

whether I · µ (w) belongs to 〈〈〈I · Pkµ 〉〉〉 .
(i) If not, then Pk+1 = Pk ∪ {w} and Ck+1 = Ck .
(ii) If so, then Pk+1 = Pk and Ck+1 = Ck ∪ {w} .

Set k = k + 1 and start again.
The algorithm terminates when Ek is empty and at that moment Ck = Pk A \ Pk

is the border of Pk. The algorithm must terminate since Pk has at most n elements,
so Pk ∪ Ck has at most ‖A‖n + 1 elements and this set grows by 1 at each step of
the algorithm.

By construction, Pk is prefix-closed, and each element w of Ck is such that I ·µ (w)
belongs to 〈〈〈I · µ (Pk) 〉〉〉: when Ek is empty, Pk is maximal.

Gaussian elimination The foregoing proofs all correspond to effective computa-
tions, assuming of course that the operations in K (addition, multiplication, taking
the inverse) are effective. All the complexities that follow are calculated assuming
that each operation in K has a fixed constant cost, independent of its operands.5

Computations in Kn are based on the Gaussian elimination procedure.

Definition 38. A sequence of k vectors (x1, x2, . . . , xk) of Kn is an echelon system
if, for all i in [k]:

(i) xi
i = 1K ; (ii) ∀j < i xi

j = 0K .

An echelon system is free and hence k � n . The following proposition is classic,
at least for commutative fields, and its proof is not really different for division rings.

5It is to be acknowledged that this is a completely unrealistic assumption.
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Proposition 39 (Gaussian elimination). Let K be a skew field and let us view Kn

as a left vector space over K. Let S = (x1, x2, . . . , xk) be an echelon system and
let y be a vector in Kn.

(i) We can decide whether y is in 〈〈〈S 〉〉〉, the subspace generated by S, and, in this
case, compute effectively the coordinates of y in S.

(ii) If y is not in 〈〈〈S 〉〉〉, we can compute effectively y′ such that S′ = S ∪ {y′} is
echelon and generates the same subspace as S ∪ {y}.

The complexity of these operations (deciding whether y is in 〈〈〈S 〉〉〉 and computing
the coordinates of either y or y′) is O(k n).

From this proposition we deduce the effective nature of the assertions, construc-
tions, and specifications used in the proofs of this section. More precisely:

Corollary 40. Let S be a finite set of vectors of Kn and let y be in Kn. We can:
(i) decide whether y belongs to 〈〈〈S 〉〉〉;
(ii) extract effectively from S a basis T of 〈〈〈S 〉〉〉;
(iii) compute effectively the coordinates in T of an (explicitly given) vector of 〈〈〈S 〉〉〉.

5 Applications of the reduction of recognisable series

5.1 Decidability of the equivalence

Even if a series has not a unique reduced representation (they are all similar),
the existence of reduced representations implies the decidability of equivalence for
automata with weights in a field.

Theorem 41. The equivalence of recognisable series over A∗ with coefficients in a
(sub-semiring of a) skew field — and thus of rational series — is decidable, with a
procedure which is cubic in the dimension of the representation of the series.

Proof. Let K be a sub-semiring of a skew field F. Two series s1 and s2 of KRec A∗

are also in FRec A∗ and s1 = s2 holds if and only if (s1 − s2) is a series of FRec A∗

of rank 0, and the rank of (s1 − s2) can be computed effectively.

This result, together with the well-known decidability of equivalence of classical
Boolean automata, should not let us think that this is the universal status. For
instance, the following holds.

Theorem 42 (Krob). The equivalence of recognisable series over A∗ with coefficients
in the semiring M = 〈N, min, + 〉 is undecidable.

Theorem 41 has however far reaching and to some extent ‘unexpected’ con-
sequences, as the following one, discovered by T. Harju and J. Karhumäki.
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Corollary 43. The equivalence of rational series over A∗
1×A∗

2×· · ·×A∗
k with coeffi-

cients in N is decidable.

Proof. A series in NRat (A∗
1×A∗

2×· · ·×A∗
k) is a series in [NRat (A∗

2×· · ·×A∗
k)]Rat A∗

1.
By Theorem 46, the latter family is isomorphic to [NRat (A∗

2×· · ·×A∗
k)]Rec A∗

1 and
the decidability of equivalence follows from Theorem 44.

Theorem 44. NRat (A∗
2×· · ·×A∗

k) is a sub-semiring of a skew field.

This result is the direct consequence of a series of classical results in mathematics cf.EAT, Sec. IV.7,
p. 616which we shall not present here.

5.2 From the series to the representation

Another way to exploit Proposition 32, is by ‘computing’ the coefficients of a reduced
representation of a recognisable series as a function of the coefficients of the series
itself. Going from the series back to the representation does not so much correspond
to an effective procedure as it expresses a fundamental property of recognisable series
on a field (see an application with Theorem 46).

Proposition 45. Let K be a skew field, s a K-recognisable series of rank n , and
〈 I, µ, T 〉 a reduced representation of s . There exist two sets of n words: P =
{p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} (which we can choose to be respectively
prefix-closed and suffix-closed) and two n×n matrices αP and βQ such that

∀w ∈ A∗ µ (w) = αP · (〈s, pi w qj〉) · βQ ,

where (〈s, pi w qj〉) denote the n×n matrix whose entry (i, j) is 〈s, pi w qj〉 .

A remarkable application of this result is the following.

Theorem 46. Let K be a (skew) field. If s is a K-rational series with a finite image,
then k s−1 is rational for all k in K.

Proof. Let 〈 I, µ, T 〉 be a reduced representation that recognises s. By Proposi-
tion 45, the image µ (A∗) is a finite submonoid of KQ×Q if s has a finite image and
the conclusion follows.
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6 Exercises

1. Compute the reduced representation of the following N-automaton.

a

a a

a

2a

a

2. Let A1 be the Q-automaton on {a}∗ shown at Figure 7 (the unique letter a of the alphabet
is not shown on the transitions of the figure). Compute a reduced automaton, equivalent
to A1.

−1

1

−1
1

−2
1

−1

−1

3

1

2

Figure 7: The Q-automaton A1

3. Consider the minimal (Boolean) automaton of {an | n ≡ 0, 1, 2, 4 (mod 7)} as an auto-
maton with multiplicity in Z/2Z and reduce it. Comment.

4. Let F be a field. Show that two F-recognisable series over A∗ are equal if and only if they
coincide on all the words of length less than the sum of the dimensions of the representations
which realise them.

Show the bound is sharp. [Hint: consider the following two automata.]
a a a a

a

5. Discriminating length. We call the discriminating length between two non-equivalent
(Boolean) automata A and B the length of a shortest word which is accepted by one and not
the other. We write Ld(n, m) (resp. Lnd(n, m) ) for the maximum of the discriminating
lengths when A and B have respectively n and m states and are deterministic (resp. and
are non-deterministic).

(a) With methods relevant to Boolean automata, show that Ld(n, m) � nm .

(b) Compute Ld(n, m) .

(c) Give an upper bound for Lnd(n, m) .
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Notation Index

A = 〈 A, Q, I, E, T 〉 (Boolean automaton),
4

A = 〈 A, Q, i, δ, T 〉 (deterministic Boolean
automaton), 34

A X=⇒ B (A conjugate to B by X), 41
An (Automaton with subliminal states),

38
δ(p, w) (transition in deterministic auto-

maton), 34
InA(p) (Incoming bouquet), 38
OutA(p) (Outgoing bouquet), 38
iA (subliminal initial state), 38
p ·w (transition in deterministic automaton),

34
tA (subliminal final state), 38
A = 〈K, A, Q, I, E, T 〉, A = 〈 A, Q, I, E, T 〉

(weighted automaton), 5
A (behaviour of A), 6
CA (set of computations in A), 6
�(d), �(c) (label of a path, a computation),

6
|d|, |c| (length of a path, a computation),

6
w(d), w(c) (weight of a path, a computa-

tion), 6
wl(d), wl(c) (weighted label of a path, a

computation), 6

B (Boolean semiring), 3

Â (determinisation of A), 58

s � t (Hadamard product of s and t), 27

K (arbitrary semiring), 2
KQ×Q (semiring of matrices with entries

in K), 2
1K (identity of the semiring K), 2
0K (zero of the semiring K), 2

Xϕ (amalgamation matrix), 42

〈〈〈G 〉〉〉 (submodule generated by G), 54

N (semiring of non negative integers), 3
Nmax (semiring N, max, +), 3
Nmin (semiring N, min, +), 3

Q (semiring of rational numbers), 3
Q+ (semiring of non negative rational num-

bers), 3

R (semiring of real numbers), 3
RA (reachability set of A), 57
As (minimal automaton of s), 62
ΦA (observation morphism), 61
ΨA (control morphism), 59
Rs (set of quotients of s), 60
r(s) (rank of the series s), 63
� (action defined by the quotient), 60
R+ (semiring of non negative real num-

bers), 3

L (characteristic series of L), 8
K〈〈A∗〉〉 (set of series over A∗ with coeffi-

cient in K), 7
〈s, w〉 (coefficient of w in the series s), 7
w−1s (quotient of s by w), 60

X⊗Y (tensor product of X and Y ), 27
µ ⊗ κ (tensor product of µ and κ), 28

dim V (dimension of the space V ), 63

Z (semiring of integers), 3
Zmax (semiring Z, max, +), 3





General Index

a co-quotient, 43
action, 52, 57, 60
addition

pointwise, 7
algebra, 7
amalgamation matrix, 42
automaton

behaviour of –, 6
Boolean, 8
characteristic, 26
computation, 6

length, 6
conjugate, 41
controllable –, 59
dimension, 4
final function, 4
incidence matrix, 9
initial function, 4
morphism

co-coverings, 39
co-immersions, 39
coverings, 38
immersions, 39
In-morphisms, 38
Out-morphisms, 38

observable –, 61
path, 5

label, 6
length, 6
w-label, 6
weight, 6

probabilistic, 27
support, 8
unambiguous, 26

K-automaton, 4

bisimulation, 33

Cauchy product, see series
conjugacy, 33, 41

control morphism, 59
convergence

simple, 11
covering, 34

determinisation, 58
subset construction, 58

dimension
of an automaton, 4

echelon system, 67
elimination

Gaussian –, 67

field
skew, 63

Gaussian elimination, 67
generating function, 26

Hadamard product, 27

identity
product-star, 16
sum-star, 16

In-morphism, 43
incidence matrix, 4

language
stochastic, 27

lateralisation, 33

matrix
proper, 16
stochatic, 26
transfer, 41

minimal automaton, 34
module, 7
(left) module, 58
monoid

finitely generated, 22
of finite type, 22
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morphism
control –, 59
observation –, 61

morphism (of semirings), 3
multiplication

exterior, 7

Nerode’s equivalence, 35

observation morphism, 61
orbit, 52
Out-morphism, 33, 42

polynomial, 8
power series, see series

locally finite family, 12
summable family, 12

quotient, 34, 42, see series

rational series, see series
reachability set, 57
regular,

seerepresentation53
representation

reduced, 64
right regular – of a monoid, 53

ring, 13, 20
division, 63

semiring, 2
commutative, 2
positive, 3, 8
strong, 20
topological semiring, 11

series, 7
Cauchy product of –, 7
characteristic, 8, 26
coefficient, 7
constant term of, 13
proper, 13
proper part of, 14
quotient of –, 60
rank, 63
rational, 14, 22
support, 8

stable, see submodule
state

final, 5

initial, 5
state-space, 59
states, 4
submodule

stable –, 62
subset construction, see determinisation

tensor product, 27
topology

dense subset, 12
product, 11

transfer matrix, 41
transitions, 4
translation

right –, 53

vector space
dimension of –, 63
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