Lecture II — Exercises

Unless stated otherwise, the alphabet A is $A = \{a, b\}$.

1. Compute the (minimal) quotient of the following \mathbb{B} -automaton:

2. Let \mathcal{D}_1 be the \mathbb{B} -automaton below. Compute the (minimal) quotient of \mathcal{D}_1 , the co-quotient of \mathcal{D}_1 , the co-quotient of \mathcal{D}_1 , etc.

3. Calculate all the quotients and all the co-quotients of the \mathbb{N} -automaton:

4. Coloured transition Lemma. Show the following statement:

Let \mathcal{A} be a (Boolean) automaton on a monoid M the transitions of which are coloured in red or in blue. Then, the set of labels of computations of \mathcal{A} that contain at least one red transition is a rational set (of M).

- 5. Show that any \mathbb{Z} -rational series is the difference of two \mathbb{N} -rational series.
- 6. Construct the Schützenberger covering \mathcal{S} of the following \mathbb{B} -automaton \mathcal{A} .

How many S-immersions are there in this covering (that is, how many sub-automata \mathcal{T} of \mathcal{S} that are unambiguous and equivalent to \mathcal{A})?

7. Compute the Schützenberger covering of the \mathbb{B} -automaton \mathcal{B}_1 of the Figure 6.

Not to be circulated

Figure 1: The automaton \mathcal{B}_1

8. Quotients and product of automata. Let \mathcal{A} , \mathcal{B} and \mathcal{C} be three K-automata on A^* . Show that if \mathcal{B} is a quotient of \mathcal{A} , then $\mathcal{B} \odot \mathcal{C}$ is a quotient of $\mathcal{A} \odot \mathcal{C}$.

9. Quotients and co-quotients of the C_n .

Le N-automate C_1 sur $\{a, b\}^*$ de la Figure 7 (a) associe à chaque mot w l'entier \overline{w} dont la représentation en base 2 est w quand on remplace a par le chiffre 0 et b par 1.

Le \mathbb{N} -automate \mathcal{C}_2 , carré de Hadamard de \mathcal{C}_1 : $\mathcal{C}_2 = \mathcal{C}_1 \odot \mathcal{C}_1$, a pour quotient minimal \mathcal{V}_2 représenté à la Figure 7 (b) et pour co-quotient minimal \mathcal{V}'_2 représenté à la Figure 7 (c).

- (a) Calculer le quotient minimal \mathcal{V}_3 et le co-quotient minimal \mathcal{V}'_3 de $\mathcal{C}_3 = \mathcal{C}_2 \odot \mathcal{C}_1$.
- (b) Calculer le co-quotient minimal \mathcal{V}'_4 de $\mathcal{C}_4 = \mathcal{C}_3 \odot \mathcal{C}_1$. Comparer avec \mathcal{V}'_3 .
- (c) En vous inspirant du calcul précédent, et en vous appuyant sur le calcul du comportement de $C_{n+1} = C_n \odot C_1$, calculer le co-quotient minimal \mathcal{V}'_{n+1} de C_{n+1} pour tout n.

Figure 2: Trois \mathbb{N} -automates

10. (a) Soient \mathcal{A}_1 l'automate (booléen) de la Figure 8 et $\widehat{\mathcal{A}}_1$ son déterminisé. Vérifier que $\widehat{\mathcal{A}}_1 \stackrel{X_1}{\Longrightarrow} \mathcal{A}_1$, avec

$$X_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \ .$$

(b) Généralisation. Soient \mathcal{A} un automate (booléen) et $\widehat{\mathcal{A}}$ son déterminisé. Montrer qu'il existe une matrice booléenne X telle que $\widehat{\mathcal{A}} \xrightarrow{X} \mathcal{A}$.

Figure 3: L'automate \mathcal{A}_1

Work in Progress

7 December 2018

11. Automata with bounded ambiguity and the Schützenberger covering. In the sequel, \mathcal{A} is a Boolean automaton, $\widehat{\mathcal{A}}$ its determinisation, and \mathcal{S} its Schützenberger covering.

Definition 3. We call *concurrent transition set* of S a set of transitions which

- (i) have the same destination (final extremity),
- (ii) are mapped onto the same transition of $\widehat{\mathcal{A}}$.

Two transitions of S are called *concurrent* if they belong to the same concurrent transition set.

We also set the following definition:

Definition 4. An automaton \mathcal{A} over A^* is of *bounded ambiguity* if there exists an integer k such that every word w in $|\mathcal{A}|$ is the label of at most k distinct computations. The smallest such k is the *ambiguity degree* of \mathcal{A} .

- (a) What can be said of an automaton whose Schützenberger covering contains no concurrent transitions?
- (b) Show that there exists a computation in S which contains two transitions of the same concurrent transition set if and only if there exists a concurrent transition which belongs to a circuit.
- (c) Let $p \xrightarrow{a} s$ and $q \xrightarrow{a} s$ be two concurrent transitions of S and

$$c := \xrightarrow{\mathcal{S}} i \xrightarrow{x} p \xrightarrow{a} s \xrightarrow{y} q \xrightarrow{a} s \xrightarrow{z} t \xrightarrow{\mathcal{S}} t$$

a computation of S where *i* is an initial state and *t* a final state. Show that w = x a y a z is the label of at least two computations of A.

- (d) Prove that an automaton \mathcal{A} is of bounded ambiguity if and only if no concurrent transition of its Schützenberger covering belongs to a circuit.
- (e) Check that \mathcal{B}_1 of Figure 6 is of bounded ambiguity.
- (f) Give a bound on the ambiguity degree of an automaton as a function of the cardinals of the concurrent transition sets of its Schützenberger covering.
 Compute that bound in the case of B₁.
- (g) Infer from the above the complexity of an algorithm which decide if an automaton is of bounded ambiguity.