Lecture II - Exercises

Unless stated otherwise, the alphabet A is $A=\{a, b\}$.

1. Compute the (minimal) quotient of the following \mathbb{B}-automaton:

2. Let \mathcal{D}_{1} be the \mathbb{B}-automaton below. Compute the (minimal) quotient of \mathcal{D}_{1}, the co-quotient of \mathcal{D}_{1}, the co-quotient of the quotient of \mathcal{D}_{1}, etc.

3. Calculate all the quotients and all the co-quotients of the \mathbb{N}-automaton:

4. Coloured transition Lemma. Show the following statement:

Let \mathcal{A} be a (Boolean) automaton on a monoid M the transitions of which are coloured in red or in blue. Then, the set of labels of computations of \mathcal{A} that contain at least one red transition is a rational set (of M).
5. Show that any \mathbb{Z}-rational series is the difference of two \mathbb{N}-rational series.
6. Construct the Schützenberger covering \mathcal{S} of the following \mathbb{B}-automaton \mathcal{A}.

How many S-immersions are there in this covering (that is, how many sub-automata \mathcal{T} of \mathcal{S} that are unambiguous and equivalent to $\mathcal{A})$?
7. Compute the Schützenberger covering of the \mathbb{B}-automaton \mathcal{B}_{1} of the Figure 6 .

Figure 1: The automaton \mathcal{B}_{1}
8. Quotients and product of automata. Let \mathcal{A}, \mathcal{B} and \mathcal{C} be three \mathbb{K}-automata on A^{*}. Show that if \mathcal{B} is a quotient of \mathcal{A}, then $\mathcal{B} \odot \mathcal{C}$ is a quotient of $\mathcal{A} \odot \mathcal{C}$.

9. Quotients and co-quotients of the \mathcal{C}_{n}.

Le \mathbb{N}-automate \mathcal{C}_{1} sur $\{a, b\}^{*}$ de la Figure 7 (a) associe à chaque mot w l'entier \bar{w} dont la représentation en base 2 est w quand on remplace a par le chiffre 0 et b par 1 .

Le \mathbb{N}-automate \mathcal{C}_{2}, carré de Hadamard de $\mathcal{C}_{1}: \mathcal{C}_{2}=\mathcal{C}_{1} \odot \mathcal{C}_{1}$, a pour quotient minimal \mathcal{V}_{2} représenté à la Figure $7(\mathrm{~b})$ et pour co-quotient minimal \mathcal{V}_{2}^{\prime} représenté à la Figure 7 (c).
(a) Calculer le quotient minimal \mathcal{V}_{3} et le co-quotient minimal \mathcal{V}_{3}^{\prime} de $\mathcal{C}_{3}=\mathcal{C}_{2} \odot \mathcal{C}_{1}$.
(b) Calculer le co-quotient minimal \mathcal{V}_{4}^{\prime} de $\mathcal{C}_{4}=\mathcal{C}_{3} \odot \mathcal{C}_{1}$. Comparer avec \mathcal{V}_{3}^{\prime}.
(c) En vous inspirant du calcul précédent, et en vous appuyant sur le calcul du comportement de $\mathcal{C}_{n+1}=\mathcal{C}_{n} \odot \mathcal{C}_{1}$, calculer le co-quotient minimal $\mathcal{V}_{n+1}^{\prime}$ de \mathcal{C}_{n+1} pour tout n.

Figure 2: Trois \mathbb{N}-automates
10. (a) Soient \mathcal{A}_{1} l'automate (booléen) de la Figure 8 et $\widehat{\mathcal{A}_{1}}$ son déterminisé. Vérifier que $\widehat{\mathcal{A}_{1}} \xrightarrow{X_{1}} \mathcal{A}_{1}$, avec

$$
X_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

(b) Généralisation. Soient \mathcal{A} un automate (booléen) et $\widehat{\mathcal{A}}$ son déterminisé. Montrer qu'il existe une matrice booléenne X telle que $\widehat{\mathcal{A}} \xrightarrow{X} \mathcal{A}$.

Figure 3: L'automate \mathcal{A}_{1}
11. Automata with bounded ambiguity and the Schützenberger covering. In the sequel, \mathcal{A} is a Boolean automaton, $\widehat{\mathcal{A}}$ its determinisation, and \mathcal{S} its Schützenberger covering.

Definition 3. We call concurrent transition set of \mathcal{S} a set of transitions which
(i) have the same destination (final extremity),
(ii) are mapped onto the same transition of $\widehat{\mathcal{A}}$.

Two transitions of \mathcal{S} are called concurrent if they belong to the same concurrent transition set.
We also set the folllowing definition:
Definition 4. An automaton \mathcal{A} over A^{*} is of bounded ambiguity if there exists an integer k such that every word w in $|\mathcal{A}|$ is the label of at most k distinct computations. The smallest such k is the ambiguity degree of \mathcal{A}.
(a) What can be said of an automaton whose Schützenberger covering contains no concurrent transitions?
(b) Show that there exists a computation in \mathcal{S} which contains two transitions of the same concurrent transition set if and only if there exists a concurrrent transition which belongs to a circuit.
(c) Let $p \xrightarrow{a} s$ and $q \xrightarrow{a} s$ be two concurrent transitions of \mathcal{S} and

$$
c:=\underset{\mathcal{S}}{\vec{s}} i \underset{\mathcal{S}}{\stackrel{x}{\mathcal{S}}} s \underset{\mathcal{S}}{a} q \underset{\mathcal{S}}{\frac{a}{\mathcal{S}}} s \xrightarrow[\mathcal{S}]{\vec{z}}
$$

a computation of \mathcal{S} where i is an initial state and t a final state. Show that $w=x a y a z$ is the label of at least two computations of \mathcal{A}.
(d) Prove that an automaton \mathcal{A} is of bounded ambiguity if and only if no concurrent transition of its Schützenberger covering belongs to a circuit.
(e) Check that \mathcal{B}_{1} of Figure 6 is of bounded ambiguity.
(f) Give a bound on the ambiguity degree of an automaton as a function of the cardinals of the concurrent transition sets of its Schützenberger covering.
Compute that bound in the case of \mathcal{B}_{1}.
(g) Infer from the above the complexity of an algorithm which decide if an automaton is of bounded ambiguity.

