
Lecture II

Morphisms of weighted automata
Conjugacy and minimal quotient

In this lecture, we address the problem of finding, given a K-automaton A, a K-
automaton B, hopefully of smaller dimension than A, and that inherits the structure
of A, that is, such that there is a correspondence between the computations of A
and those of B. This amounts to describing the morphisms of K-automata, that is,
the mappings between K-automata that preserve their structure.

Contents
1 Morphisms of Boolean automata 34

1.1 The case of (complete) deterministic automata 34
1.2 The case of general (Boolean) automata 35
1.3 Local properties of morphisms 37
1.4 The Schützenberger covering 40

2 Morphisms of weighted automata 42
2.1 Conjugacy . 42
2.2 Out-morphisms, In-morphisms 43
2.3 Minimal quotient . 46

3 Exercises . 48

The classical notion of the minimal automaton of a language, minimal quotient
of any determistic that accepts the language is at the same time an example of what
we want to generalise and somewhat misleading. Already when it deals with non-
deterministic (Boolean) automata, this generalisation requires a lateralisation which
is not usually associated with the notion morphism and this may may explain it has
been given the other name of bisimulation in the literature. We call it Out-morphism
to stress the link with the notion of morphism.

We define Out-morphism in a naive way for non-deterministic Boolean auto-
mata and by means of the mathematical notion of conjugacy for the general case
of weighted automata. This notion being set up, the same theory as the classical

33

2.16 – Finite automata based computation models MPRI 2018/2019

one for complete deterministic automata can be rolled out and it is easily seen that
every weighted automaton admits a minimal quotient as the image of the coarsest
Out-morphism which is computed essentially by the same algorithm.

It is worth to be noted that, at least in the case of Boolean automata, the
converse operation is indeed at least as interesting: given A, build B of which A is
a morphic image, hence larger than A, but whose computations are less entangled,
in such a way that it becomes possible, by means of other operations, to distinguish
and make choices between these computations. Such constructions are essentially
considered (even for general weighted automata) when the computations of B are in
a 1-to-1 corespondence with those of A, that is, when B is a covering of A.

1 Morphisms of Boolean automata

This section is more than a reminder or an appetizer. It introduces at the end the
notions of local properties of morphisms, that will be instrumental in the study of
transducers.

In this section, all automata are Boolean automata. We begin with the present-
ation of the classical definition and computation of the minimal automaton of a
rational language while insisting on the morphism point of view.

1.1 The case of (complete) deterministic automata

A deterministic automaton is denoted by A = 〈 A, Q, i, δ, T 〉 rather than by A =
〈 A, Q, I, E, T 〉 , where δ is the transition function, that is, a map δ : Q×A → Q .
For every w in A∗ and p in Q, we write p · w = q rather than δ(p, w) = q . Since
(p · u) · v = p · uv the transition function δ defines an action of A∗ over Q.

The minimal automaton of a language L of A∗ is defined by means of the quotient
operation that anticipate the notion of quotient of a series (cf. Definition III.13):
if u is in A∗, the (left) quotient of L by u is the language u−1L = {v ∈ A∗ | uv ∈ L} .
Let RL be the set of quotients of L: RL =

{
u−1L

∣∣ u ∈ A∗}
; RL is finite if and

only if L is a rational language.
Since (uv)−1L = v−1(u−1L) , the (left) quotient is a (right) action of A∗ over

the set of languages P (A∗), which in turn defines a deterministic automaton on any
set of languages closed by quotient.

For every rational language L, let us denote by AL the finite deterministic auto-
maton AL = 〈 A, RL, {L},�, TL 〉 , where � is another notation for the quotient:

L � u = u−1L and TL =
{

u−1L
∣∣∣ 1A∗ ∈ u−1L

}
.

The automaton AL accepts L and is called the minimal automaton of L, a termin-
ology that is justified by the following.

Work in Progress – 34 – 14 December 2018

Lecture notes Weighted Automata and Transducers

Let A = 〈 A, Q, i, δ, T 〉 be a complete deterministic accessible automaton and
L = L(A) the language that it accepts. For all p in Q, we write Lp for the language
accepted by the automaton obtained from A by replacing the initial state i by p:

Lp = L(〈 A, Q, p, δ, T 〉) = {w ∈ A∗ | p · w ∈ T } .

Definition 1. The Nerode equivalence is the relation ν defined on Q by

p ≡ q mod ν ⇐⇒ Lp = Lq .

Proposition 2. The Nerode equivalence induces a map ϕ : Q → Q/ν which satur-
ates T and such that ϕ(p · a) = (ϕ(p)) · a .

Proposition 2 allows to define a quotient automaton A/ν = 〈 A, Q/ν, [i]ν , δν , Tν 〉.

Theorem 3. AL = A/ν .

Theorem 3 tells at the same time that AL is the quotient of every complete
deterministic automaton that accepts L and that it is the complete deterministic
automaton that accepts L with the minimal number of states.

Example 4. Figure 1 shows a complete deterministic automaton and its minimal
quotient, obtained by merging states.

a b a

b

b a b a

a b

b a a b

Figure 1: A complete deterministic automaton and its minimal quotient

Proposition 5. The Nerode equivalence of a finite deterministic automaton is ef-
fectively computable by a partition refinement algorithm.

1.2 The case of general (Boolean) automata

The first definition of morphism for (Boolean) automata follows naturally from the
one for deterministic ones. It appears however that it has to be strengthened in order
to give rise to the notion of minimal quotient. This new definition of Out-morphism,
similar to the one of simulation for transition systems, applies to any Boolean auto-
maton but is lateralised (or directed). It is described more systematically in the next
subsection.

For the rest of this section, the alphabet is A and fixed, and A = 〈 Q, I, E, T 〉
and B = 〈 R, J, F, U 〉 are two Boolean automata.

Not to be circulated – 35 – 14 December 2018

2.16 – Finite automata based computation models MPRI 2018/2019

Definition 6. A map ϕ : Q → R is a morphism (of automata) if:
(i) ϕ(I) ⊆ J ,
(ii) ϕ(T) ⊆ U , and
(iii) for every transition (p, a, q) in E, (ϕ(p), a, ϕ(q)) is a transition in F .

If ϕ is such a morphism, we write ϕ : A → B .

Proposition 7. If ϕ : A → B is a morphism, then A ⊆ B .

Example 8. (i) If U is the one-state automaton which accepts the whole A∗,
then the map which sends all states of any automaton A on the unique state of U
is a morphism.

(ii) If C = A × B , then both projections πA : C → A and πB : C → B are
morphisms.

The reason for the inclusion in Proposition 7 be strict is that not every (suc-
cessful) computation in B may be lifted into a (successful) computation in A: the
morphism ϕ is said not to be conformal. The two sorts of morphisms in Example 8
are not conformal. Figure 2 gives another example of a non-conformal morphism.
It shows that the inclusion in Proposition 7 may be strict, even when ϕ induces a
bijection between the transitions — which is the strongest possible condition besides
being the identity.

a

a

a

b

b b

b

b

b

a

a

a

Figure 2: A non-conformal morphism (the morphism is the horizontal projection)

Example 8(i) shows how weak the notion of automaton morphism can be. In
order to have morphisms which really preserve the structure of automata (which is
supposed to be the role of morphisms) we consider morphisms which meet additional
conditions. We first do it ‘directly’; in the next subsection, we introduce the more
general notion of local properties of morphisms that allows to define a richer variety
of morphisms.

Definition 9. A map ϕ : Q → R is an Out-morphism if:
(o) ϕ(Q) = R , that is, if ϕ is surjective,
(i) ϕ(I) = J ,
(ii) T = ϕ−1(U) ,
(iii) for every transition (p, a, q) in E, (ϕ(p), a, ϕ(q)) is a transition in F ,
(iv) for every transition (r, a, s) in F and every p in ϕ−1(r), there exists a q

in ϕ−1(s) such that (p, a, q) is a transition in E.

Work in Progress – 36 – 14 December 2018

Lecture notes Weighted Automata and Transducers

Remark 10. The notion of Out-morphism is directed since condition (iv), which
consists in a succession of two quantifiers: ‘for all..., there exists...’, breaks the
symmetry between the origin and the destination of the transitions.

Examples 11. (i) If B is complete and with every state being final,
then πA : A × B → A is an Out-morphism.

(ii) A morphism from a complete deterministic automaton onto an accessible
deterministic automaton is an Out-morphism.

Definition 12.
An automaton B is a quotient of A if there exists an Out-morphism ϕ : A → B .

Remark 13. The terminology does not make it so clear, but the notion of quotient
is directed as it derives from the one of Out-morphism. It means somehow that the
true morphisms are the Out-morphisms.

Proposition 14. If B is a quotient of A, then every (successful) computation B can
be lifted into a (successful) computation A.

Corollary 15. If B is a quotient of A, then A = B .

These two statements show that we have reached our goal with the notion of Out-
morphism. In order to avoid repetition, we postpone to after the definition of local
properties of morphisms and a new expression of Out-morphisms, the presentation
of results attached to the notion of quotient.

1.3 Local properties of morphisms

We now take more precise definitions for characterising morphisms; we first set up
a convention that reduces the notion of automaton morphism to that of a labelled
graph morphism (and get rid of conditions (i) and (ii) in Definitions 6 and 9).

1.3.1 Subliminal states

With every automaton A = 〈 Q, I, E, T 〉 , we associate, by a sort of normalisation,
an automaton An to which we have added two new states — iA , an initial state,
and tA , a final state — and some transitions, labelled with 1A∗ , which go from iA
to each initial state of A and from each final state of A to tA :

An = 〈 Q ∪ {iA, tA}, iA, En, tA 〉 ,
En = E ∪ {(iA, 1A∗ , i) | i ∈ I} ∪ {(t, 1A∗ , tA) | t ∈ T } .

These two new states, iA and tA, are called the (initial and final) subliminal states
of A. We verify easily that An is equivalent to A. More precisely, there is a bijection
between the computations of An and those of A and, of course, the compuatations
that correspond in this bijection have the same label.

Not to be circulated – 37 – 14 December 2018

2.16 – Finite automata based computation models MPRI 2018/2019

Remark 16. Even though we deal here with Boolean automata only, the definition
of An may seem to imply a drastic change in the model of (finite) automata since it
allows the empty word to be the label of a transition, transitions that are then called
spontaneous transitions (or ε-transitions). In full generality, this feature opens the
possibility for a word to be the label of an infinite number of computations and
raises the (difficult) problem of the validity when it comes to weighted automata, a
problem which will not be treated in these notes. However, if there is no circuit of
spontaneous transitions in the automaton, then every word is still the label of a finite
number of computations, its weight can be computed by the sum in Equation (I.1.1)
and the behaviour of the automaton is well-defined. Clearly, the construction of An
fall in this case where no circuit of spontaneous transitions is created.

If ϕ is a map from A to B, we extend it to a map ϕn from An to Bn by taking
ϕn(iA) = iB and ϕn(tA) = tB . We then verify, just as easily, that ϕ : A → B is an
automaton morphism if and only if ϕn : An → Bn is a labelled graph morphism.

1.3.2 Outgoing and incoming bouquets

For every state p of A = 〈 Q, I, E, T 〉 , we denote by OutA(p) the set of transitions
in A outgoing from p and by InA(p) the set of transitions arriving at p:

OutA(p) =
{
e ∈ E

∣∣ e =
(
p, a, q

)}
, InA(p) =

{
e ∈ E

∣∣ e =
(
q, a, p

)}
,

and we call these sets the outgoing bouquet and the incoming bouquet at state p

respectively (the automaton A being understood). These notions are directed, of
course, and dual, that is, InA(p) = Out tA (p) for every p in Q (with the slight abuse
which consists in considering that A and tA have the same set of transitions). The
purpose of the definition of these bouquets is the description of morphism properties
based on the remark that if ϕ : A → B is a morphism, then, for every p in Q,
ϕ maps OutA(p) into OutB(ϕ(p)) and InA(p) into InB(ϕ(p)) .

Definition 17. A morphism ϕ : A → B is Out-surjective (resp. Out-injective,
Out-bijective) if, for every state p of An, the restriction of ϕ to OutA(p) is a sur-
jective (resp. injective, bijective) map into OutB(ϕ(p)).

The morphism ϕ is In-surjective (resp. In-injective, In-bijective) if, for every
state p of An, the restriction of ϕ to InA(p) is a surjective (resp. injective, bijective)
map into InB(ϕ(p)).

The ‘Out-properties’ and the corresponding ‘In-properties’ are dual properties,
that is, if ϕ : A → B is Out-surjective (resp. Out-injective, Out-bijective) then
ϕ : tA → tB is In-surjective (resp. In-injective, In-bijective).

Remark 18. Condition(iv) of Definition 9 is another way to express that the morph-
ism ϕ is Out-surjective.

Work in Progress – 38 – 14 December 2018

Lecture notes Weighted Automata and Transducers

Remark 19. The conditions of Definition 17 on the outgoing bouquets of the sub-
liminal initial states imply that if ϕ : A → B is Out-surjective, then ϕ(I) = J

(condition(i) of Definition 9). Considering the outgoing bouquets of the terminal
states — and the transitions toward subliminal final states imply that if ϕ is Out-
surjective, then T = ϕ−1(U) (condition(ii) of Definition 9). Similarly, if ϕ is
Out-injective, then, for every j in J , there exists at most one i in I such that
ϕ(i) = j .

In a dual way, if ϕ : A → B is In-surjective, then ϕ(T) = U and I = ϕ−1(J)
and if ϕ is In-injective, then for every u in U there exists at most one t in T such
that ϕ(t) = u .

Out-morphisms are conformal, as expressed by the following.

Proposition 20. Let ϕ : A → B be an Out-surjective morphism. For every path d

in B whose source s is in the image of ϕ and for every p such that ϕ(p) = s there
exists at least one path c in A whose source is p and such that ϕ(c) = d.

Corollary 21. If ϕ : A → B is an Out-surjective morphism, then A = B .

Corollary 22. If ϕ : A → B is an Out-bijective morphism, then ϕ is a bijection
between the successful computations of A and those of B.

Corollary 23. If ϕ : A → B is an Out-surjective morphism and if B is accessible
then ϕ is (globally) surjective.

1.3.3 Out- and In-morphisms revisited

With Corollary 23, we see that Out-surjective morphisms are ‘almost always’ sur-
jective (condition(o) of Definition 9). For simplification and conciseness, in order
to avoid special cases, we take that latter property as an hypothesis and set up the
following definitions.

Definition 24. A surjective Out-surjective morphism is called an Out-morphism.
A surjective In-surjective morphism is called an In-morphism.
A surjective Out-bijective morphism is called a covering.1

A surjective In-bijective morphism is called a co-covering.2

A surjective Out-injective morphism is called an immersion.
A surjective In-injective morphism is called a co-immersion.

Remarks 18 and 19 show that Definition 9 and the definition above coincide (for
Out-morphisms). We then repeat Definition 12 and Proposition 14.

Definition 25.
An automaton B is a quotient of A if there exists an Out-morphism ϕ : A → B .
An automaton B is a co-quotient of A if there exists an In-morphism ϕ : A → B .

1In French, revêtement.
2In French, co-revêtement.

Not to be circulated – 39 – 14 December 2018

2.16 – Finite automata based computation models MPRI 2018/2019

The automaton B is a co-quotient of A if tB is a quotient of tA .

Proposition 26. If B is a quotient (resp. a co-quotient) of A, then every (success-
ful) computation B can be lifted onto a (successful) computation A.

Remark 27. Proposition 26 implies that if B is a quotient of A, then A is a sim-
ulation of B. The terminology of simulation is very common in several areas close
to automata theory but using a different vocabulary (transition systems, coalgebra,
etc.). Note that the converse statement (if A is a simulation of B, then B is a
quotient of A) does not hold. See Proposition 31 below.

The notion of quotient allows to extend the one of minimal automata.

Proposition 28. Every automaton A has a minimal quotient C, which is unique
up to an isomorphism, and which is the quotient of any quotient B of A.

Remark 29. The minimal quotient of an automaton is not canonically attached to
the accepted language anymore but depends on the automaton it is computed from.

The dual of Proposition 28 also holds.

Proposition 30. Every automaton A has a minimal co-quotient D, which is unique
up to an isomorphism, and which is the co-quotient of any co-quotient B of A.

The minimal quotient or co-quotient of an automaton can be computed by a kind
of Moore algorithm that consists in successive refinements of the trivial partition on
the set of states. We come back to this question at Section 2.3.

Finally, let us note that the notion of quotient allows to give a clean definition
of bisimulation.

Proposition 31. Two automata A and B are bisimilar if and only if they have the
same (or isomorphic) minimal quotient.

1.4 The Schützenberger covering

We begin with an elementary statement.

Proposition 32. Let A be an accessible automaton, B a complete deterministic
automaton equivalent to A, and E the accessible part of B × A . Then πA, the
projection of B×A onto A, is a covering from E to A.

Definition 33. Let A be an accessible automaton and Â its determinisation. The
Schützenberger covering, or S-covering, of A is the accessible part S of Â×A .

Theorem 34. Let A be an accessible automaton and S its Schützenberger covering.
Then S satisfies:

(i) πA is a covering from S to A;
(ii) πÂ is an In-morphism from S to Â .

Work in Progress – 40 – 14 December 2018

Lecture notes Weighted Automata and Transducers

p

q

r

a

b

a b

a b

{p} {p, q} {p, r} {p, q, r}a b
a

b
b

a

b

a

a

a

b

a

b

a a

b

a

a

b

b

b

b a b

b

a

a

Figure 3: The S-covering of A1

Example 35. Figure 3 shows the S-covering of the automaton A1,

Proof of Theorem 34. Since Â is a complete deterministic automaton equivalent
to A, condition (i) is the instance of Proposition 32 for B = Â and it remains to
prove condition (ii). From the definition of transitions in Â = 〈P (Q), {I}, F, U 〉 ,
namely,

P
a−−→
Â

S ⇐⇒ S =
{

q

∣∣∣∣ ∃p ∈ P p
a−−→
A

q

}
, (1.1)

we first deduce:

Property 36. The states of S are the pairs (P, p) where P is a state of Â and p is
in P .

Proof. Let P be a state of Â: that is, there exists w in A∗ such that

P =
{

p

∣∣∣∣ ∃i ∈ I i
w−−→
A

p

}
.

Thus (P, p) is a state of S; that is, it is accessible in Â×A for all p in P . Conversely,
if (P, q) is a state of S, there exists w in A∗ and i in I such that both {I} w−−→

Â
P

and i
w−−→
A

q , and hence q is in P .

We next deduce by (1.1) that

∀P, S ⊆ Q , ∀q ∈ S , ∀a ∈ A P
a−−→
Â

S =⇒ ∃p ∈ P p
a−−→
A

q

=⇒ ∃p ∈ P (P, p) a−−→
Â×A

(S, q)

Not to be circulated – 41 – 14 December 2018

2.16 – Finite automata based computation models MPRI 2018/2019

since (P, p) is a state of S, which indeed means that πÂ : S → Â is an In-surjective
labelled graph morphism.

If P ⊆ Q is final in Â there exists at least one t in P which is final in A, hence
a state (P, t) which is final in S. On the other hand, I is the unique initial state
of Â, every i in I is initial in A, hence every state (I, i) is initial in S. Altogether,
πÂ is an In-surjective morphism.

Corollary 37. For every Boolean automaton A, there exists an automaton T such
that

(i) T is equivalent to A;
(ii) T is unambiguous;
(iii) there exists a morphism ϕ : T → A .

It is not a new result that given an automaton A, it is possible to find an
unambiguous automaton T equivalent to A: the determinisation of A for instance
answers the question. That T can be chosen in a way there is a morphism from T
to A, that is, one can see in A the computations of T is a new, and far reaching,
property.

2 Morphisms of weighted automata

After the definition of any structure one looks for morphisms between objects of that
structure, and weighted automata are no exception. Moreover, morphisms of graphs,
and therefore of classical Boolean automata, are not less classical, and one waits for
their generalisation to weighted automata. Taking into account multiplicity proves
however to be not so simple. In the sequel, all automata are supposed to be of finite
dimension.3

We choose to describe the morphisms of weighted automata via the notion of
conjugacy, borrowed from the theory of symbolic dynamical systems.

2.1 Conjugacy

Definition 38. A K-automaton A = 〈 I, E, T 〉 is conjugate to a K-automaton
B = 〈 J, F, U 〉 if there exists a matrix X with entries in K such that

I X = J, E X = X F, and T = X U.

The matrix X is the transfer matrix of the conjugacy and we write A X=⇒ B .

3May be it should have been mentioned that the matter developed in Section 1 did not require
the automata be finite.

Work in Progress – 42 – 14 December 2018

Lecture notes Weighted Automata and Transducers

If A is conjugate to B, then, for every n, the series of equalities holds:

I En T = I En X U = I En−1 X F U = . . . = I X F n U = J F n U ,

from which the following is directly deduced.

Proposition 39. If A is conjugate to B , then A and B are equivalent.

Example 40. It is easily checked that the Z-automaton Y1 of Figure 4 is conjugate
to the Z-automaton Z1 of the same figure with the transfer matrix X1:

X1 =

1 0 0 0
0 −1 1 0
0 1 1 0
0 0 0 1

 .

a

−2a

b

2bY1

−a

b

−a

b
a

b
a

b Z1

Figure 4: Two conjugate Z-automata

In spite of the idea conveyed by the terminology, the conjugacy relation is not
an equivalence but a preorder relation. Suppose that A X=⇒ C holds; if C Y=⇒ B
then A XY=⇒ B , but if B Y=⇒ C then A is not necessarily conjugate to B, and we
write A X=⇒ C Y⇐= B or even A X=⇒ Y⇐= B . This being well understood, we shall
speak of “conjugate automata” when the orientation does not matter.

If A = 〈 I, E, T 〉 is conjugate to B = 〈 J, F, U 〉 then the same conjugacy
relation holds between the matrices of the corresponding representations, that is, if
A = (I, µ, T) and B = (J, κ, U) , then, as above, I X = J , T = X U , and

∀a ∈ A µ(a) X = X κ(a) . (2.1)

Then, the same conjugacy relation holds for the representations of every word,
that is:

∀w ∈ A∗ µ(w)X = X κ(w) . (2.2)

2.2 Out-morphisms, In-morphisms

Let ϕ : Q → R be a surjective map and Xϕ the Q×R-matrix where the (q, r)-th
entry is 1 if ϕ(q) = r, and 0 otherwise. Since ϕ is a map, every row of Xϕ contains
exactly one 1 and since ϕ is surjective, every column of Xϕ contains at least one 1.
Such a matrix is called an amalgamation matrix in the setting of symbolic dynamics.

Not to be circulated – 43 – 14 December 2018

2.16 – Finite automata based computation models MPRI 2018/2019

Definition 41. Let A and B be two K-automata of dimension Q and R respectively.
We say that a surjective map ϕ : Q → R is an Out-morphism (from A onto B) if A
is conjugate to B by Xϕ, that is, if A Xϕ=⇒ B , and we write ϕ : A → B .

We also say that B is a quotient of A, if there exists an Out-morphism ϕ : A → B .

Remark 42. If K = B, then Definition 41 coincide with Definition 9.

Again, the notions of Out-morphism and quotient are lateralised, or directed,
since the conjugacy relation is not symmetric. Stated otherwise, and as we see with
Proposition 47, it is directed in that it refers not to the transitions of the automaton
but to the outgoing transitions from the states of the automaton. We then define
the dual notions of In-morphism and co-quotient.

Definition 43. With the notation above, a surjective map ϕ : Q → R is an In-
morphism (from A onto B) if B is conjugate to A by tXϕ, that is, if B

tXϕ=⇒ A , and
we write again ϕ : A → B .

We say that B is a co-quotient of A, if there exists an In-morphism ϕ : A → B .

Example 44. Let C2 be the N-automaton of Figure I.3 and ϕ2 the map from
{j, r, s, u} to {i, q, t} such that jϕ2 = i , uϕ2 = t and rϕ2 = sϕ2 = q , then

Xϕ2 =

1 0 0
0 1 0
0 1 0
0 0 1

and ϕ2 is an Out-morphism from C2 onto V2 and an In-morphism from C2 onto V ′
2.

j r

s u

C2

b

a

b

2a

2b

2b2a

2b

4a

4b

b 2b

b

i q tV2
2b 2b

b

a + b 2a + 2b 4a + 4b

i q t V ′
2

b 4b

b

a + b 2a + 2b 4a + 4b

Figure 5: V2 is a quotient and V ′
2 a co-quotient of C2

In contrast with this special example, a map ϕ : Q → R is not usually both
an Out- and an In-morphism. When necessary we shall write ϕ : A Out→ B and
ϕ : A In→ B in order to specify, or to distinguish between, the case.

Work in Progress – 44 – 14 December 2018

Lecture notes Weighted Automata and Transducers

It directly follows from Definitions 41 and 43 that if ϕ : A Out→ B and ψ : A In→ C
are an Out- and an In-morphism respectively, then

C
tXψ=⇒ A Xϕ=⇒ B hence C

tXψXϕ=⇒ B . (2.3)

For instance, it holds:

V ′
2

1 0 0

0 2 0
0 0 1

=⇒ V2 .

The problem of establishing a converse to the implication expressed in (2.3), that is,
proving that if two automata B and C are conjugate then there exists an automaton A
such that B is a quotient of A and C a co-quotient of A is out of the scope of these
lecture notes (the answer is indeed somewhat more complex). But we can at lest
state the following.

Theorem 45. Let K = B or N. If A and B are equivalent K-automata, then there
exists a K-automaton C such that A is a quotient of C and B a co-quotient of C.

For instance, if A is a Boolean automaton and B = Â, the Schützenberger
covering is the automaton C the existence of which is insured by the theorem.
Remark 46. The entries of the amalgamation matrix Xϕ are 0K or 1K, hence belong
to the center of K and from (2.1) follows that if ϕ is an In-morphism from A to B
it holds

∀a ∈ A κ(a) tXϕ = tXϕ µ(a) and then tµ(a) Xϕ = Xϕ
tκ(a) ,

which means that in the case where we could speak of the transpose of an automaton,
hence essentially when K is commutative, ϕ is an In-morphism from A to B if ϕ is
an Out-morphism from tA to tB. This statement makes appear more clearly that
In-morphism is the dual notion of Out-morphism. Our definition has the advantage
that it does not depend on the one of the transpose of an automaton.

It is to be noted that in the definition of an Out-morphism ϕ : A → B , the
image is immaterial and only counts the map equivalence of ϕ — which is sufficient
to determine the matrix Xϕ. From any amalgamation matrix Xϕ, we construct a
matrix Yϕ by transposing Xϕ and by cancelling certain of its entries in such a way
that Yϕ is row monomial (with exactly one 1 per row); Yϕ is not uniquely determined
by ϕ but also depends on the choice of a ‘representative’ in each class for the map
equivalence of ϕ. Whatever this choice, the product Yϕ · Xϕ is the identity matrix
of dimension R (as the matrix representing ϕ ◦ ϕ−1). Easy matrix computations
establish the following.

Proposition 47. Let A = 〈 I, E, T 〉 be a K-automaton of dimension Q. An equi-
valence ϕ on Q is an Out-morphism if and only if E and T satisfy the two equations

Xϕ · Yϕ · E · Xϕ = E · Xϕ , (2.4)
and Xϕ · Yϕ · T = T . (2.5)

Not to be circulated – 45 – 14 December 2018

2.16 – Finite automata based computation models MPRI 2018/2019

In this case, the K-automaton B = 〈 J, F, U 〉 defined by the following equations

F = Yϕ · E · Xϕ , J = I · Xϕ and U = Yϕ · T (2.6)

is the quotient of A by ϕ.

Equations 2.4 and 2.5 can be read in the following way: an equivalence ϕ on Q

is an Out-morphism (understood, of A) if for any two states p and p′ equivalent
modulo ϕ the sum of the labels of the transitions that go from p to all the states of
a whole class modulo ϕ is equal to the sum of the labels of the transitions that go
from p′ to the same states and if any two entries of T indexed by equivalent states
modulo ϕ are equal, that is (we denote by [q]ϕ the class of q modulo ϕ):

∀p, p′, q ∈ Q p ≡ p′ mod ϕ =⇒

(i)
∑

r∈[q]ϕ
Ep,r =

∑
s∈[q]ϕ

Ep′,s

(ii) Tp = Tp′

(2.7)

Remark 48. It is easy to chek that Definitions 12 and 17 coincide if K = B.

2.3 Minimal quotient

Theorem 49. Let A be a K-automaton of finite dimension. Among all quotients
of A (resp. among all co-quotients of A), there exists one, unique up to isomorphism
and effectively computable from A, which has a minimal number of states and which
is a quotient (resp. a co-quotient) of all these K-automata.

Proof. A surjective map ϕ : Q → R defines an Out-morphism ϕ : A → B if and
only if Equations (2.4) and (2.5) (which do not involve B) are satisfied.

To prove the existence of a minimal quotient, it suffices to show that if ϕ : Q → R

and ψ : Q → P are two maps that define Out-morphisms, the map ω : Q → S also
defines an Out-morphism, where ω = ϕ ∨ ψ is the map whose map equivalence is
the upper bound of those of ϕ and ψ; that is, the finest equivalence which is coarser
than the map equivalences of ϕ and ψ. In other words, there exist ϕ′ : R → S

and ψ′ : P → S such that ω = ϕϕ′ = ψψ′ and each class modulo ω = ϕ ∨ ψ can
be seen at the same time as a union of classes modulo ϕ and as a union of classes
modulo ψ. It follows that

E · Xω = E · Xϕ · Xϕ′ = E · Xψ · Xψ′ (2.8)

and if two states p and r of Q are congruent modulo ω, there exists q such that
ϕ(p) = ϕ(q) and ψ(q) = ψ(r) (in fact a sequence of states qi etc.). The rows p

and q of E · Xϕ are equal, and the rows q and r of E · Xψ are equal, hence, by (2.8),
the rows p and r of E · Xω are too.

Work in Progress – 46 – 14 December 2018

Lecture notes Weighted Automata and Transducers

To compute this minimal quotient we can proceed by successive refinements of
partitions, exactly as for the computation of the minimal automaton of a language
from a deterministic automaton which recognises the language.

In what follows the maps ϕi are identified with their map equivalences; the
image is irrelevant. A state r of Q is identified with the row vector of dimension Q,
characteristic of r and treated as such. For example, ϕ(r) = ϕ(s) can be written
r · Xϕ = s · Xϕ .

The map ϕ0 has the same map equivalence as T ; that is,

r · Xϕ0 = s · Xϕ0 ⇔ r · T = s · T ,

which can also be written
Xϕ0 · Yϕ0 · T = T , (2.9)

and the same equation holds for every map finer than ϕ0. For each i, ϕi+1 is finer
than ϕi and, by definition, r and s are joint in ϕi (that is, r · Xϕi = s · Xϕi) and
disjoint in ϕi+1 if r · E · Xϕi �= s · E · Xϕi . Let j be the index such that ϕj+1 = ϕj ,
that is, such that

r · Xϕj = s · Xϕj =⇒ r · E · Xϕj = s · E · Xϕj , (2.10)

which can be rewritten

Xϕj · Yϕj · E · Xϕj = E · Xϕj . (2.11)

By (2.9) and (2.11), ϕj is an Out-morphism.
Conversely, every Out-morphism ψ satisfies (2.5) and is hence finer than ϕ0.

Then, for all i, if ψ is finer than ϕi it must also be finer than ϕi+1. In fact, if r

and s are joint in ψ, it follows that r · Xψ = s · Xψ and hence also r · Xϕi = s · Xϕi

since ϕi is coarser than ψ, and hence r and s are joint in ϕi+1: ψ is finer than ϕj

which is thus the coarsest Out-morphism.

Remark 50. After establishing that the minimal quotient of a K-automaton and
the minimal automaton of a language are computed by the same algorithm, let us
repeat what we already stated in Remark 29: the latter automaton is canonically
associated with the language, whereas the former is associated with the K-automaton
we started from, and not with its behaviour.

Not to be circulated – 47 – 14 December 2018

2.16 – Finite automata based computation models MPRI 2018/2019

3 Exercises
1. Compute the (minimal) quotient of the following B-automaton:

b

a

a

a

b

a

b

a

a

b

a

2. Let D1 be the B-automaton below. Compute the (minimal) quotient of D1, the co-quotient
of D1, the co-quotient of the quotient of D1, etc.

a

a a
a

a

a

a

3. Calculate all the quotients and all the co-quotients of the N-automaton:

a

a

4. Coloured transition Lemma. Show the following statement:
Let A be a (Boolean) automaton on a monoid M the transitions of which are coloured in
red or in blue. Then, the set of labels of computations of A that contain at least one red
transition is a rational set (of M).

5. Show that any Z-rational series is the difference of two N-rational series.

6. Construct the Schützenberger covering S of the following B-automaton A.

a + b

aa b
b

How many S-immersions are there in this covering (that is, how many sub-automata T of S
that are unambiguous and equivalent to A)?

7. Compute the Schützenberger covering of the B-automaton B1 of the Figure 6.

8. Quotients and product of automata. Let A, B and C be three K-automata on A∗.
Show that if B is a quotient of A, then B � C is a quotient of A � C.

Work in Progress – 48 – 14 December 2018

Lecture notes Weighted Automata and Transducers

a

b

a

b

a bb a

a b

Figure 6: The automaton B1

9. Quotients and co-quotients of the Cn.

Le N-automate C1 sur {a, b}∗ de la Figure 7 (a) associe à chaque mot w l’entier w dont la
représentation en base 2 est w quand on remplace a par le chiffre 0 et b par 1.

Le N-automate C2, carré de Hadamard de C1: C2 = C1 � C1, a pour quotient minimal V2
représenté à la Figure 7 (b) et pour co-quotient minimal V ′

2 représenté à la Figure 7 (c).

(a) Calculer le quotient minimal V3 et le co-quotient minimal V ′
3 de C3 = C2 � C1.

(b) Calculer le co-quotient minimal V ′
4 de C4 = C3 � C1. Comparer avec V ′

3.
(c) En vous inspirant du calcul précédent, et en vous appuyant sur le calcul du comporte-

ment de Cn+1 = Cn � C1, calculer le co-quotient minimal V ′
n+1 de Cn+1 pour tout n.

b

a + b 2a + 2b

(a) C1

2b 2b

b

a + b 2a + 2b 4a + 4b

(b) V2

b 4b

b

a + b 2a + 2b 4a + 4b

(c) V ′
2

Figure 7: Trois N-automates

10. (a) Soient A1 l’automate (booléen) de la Figure 8 et Â1 son déterminisé. Vérifier
que Â1

X1=⇒ A1 , avec

X1 =

1 0 0
1 1 0
1 0 1
1 1 1

 .

(b) Généralisation. Soient A un automate (booléen) et Â son déterminisé. Montrer
qu’il existe une matrice booléenne X telle que Â X=⇒ A .

a b
a

b

a

b

Figure 8: L’automate A1

11. Automata with bounded ambiguity and the Schützenberger covering. In the
sequel, A is a Boolean automaton, Â its determinisation, and S its Schützenberger covering.

Not to be circulated – 49 – 14 December 2018

2.16 – Finite automata based computation models MPRI 2018/2019

Definition 51. We call concurrent transition set of S a set of transitions which

(i) have the same destination (final extremity),

(ii) are mapped onto the same transition of Â.

Two transitions of S are called concurrent if they belong to the same concurrent trans-
ition set.

We also set the folllowing definition:

Definition 52. An automaton A over A∗ is of bounded ambiguity if there exists an integer k

such that every word w in A is the label of at most k distinct computations. The smallest
such k is the ambiguity degree of A.

(a) What can be said of an automaton whose Schützenberger covering contains no con-
current transitions?

(b) Show that there exists a computation in S which contains two transitions of the same
concurrent transition set if and only if there exists a concurrrent transition which
belongs to a circuit.

(c) Let p
a−−→ s and q

a−−→ s be two concurrent transitions of S and

c := −→
S

i
x−−→
S

p
a−−→
S

s
y−−→
S

q
a−−→
S

s
z−−→
S

t −→
S

a computation of S where i is an initial state and t a final state. Show that w = xay az

is the label of at least two computations of A.

(d) Prove that an automaton A is of bounded ambiguity if and only if no concurrent
transition of its Schützenberger covering belongs to a circuit.

(e) Check that B1 of Figure 6 is of bounded ambiguity.

(f) Give a bound on the ambiguity degree of an automaton as a function of the cardinals
of the concurrent transition sets of its Schützenberger covering.
Compute that bound in the case of B1.

(g) Infer from the above the complexity of an algorithm which decide if an automaton is
of bounded ambiguity.

Work in Progress – 50 – 14 December 2018

Notation Index

A/ν (quotient of automaton A by ν), 35
A = 〈 A, Q, I, E, T 〉 (Boolean automaton),

4
A = 〈 A, Q, i, δ, T 〉 (deterministic Boolean

automaton), 34
A X=⇒ B (A conjugate to B by X), 43
AL (minimal (Boolean) automaton of L), 34
An (Automaton with subliminal states), 37
ϕn (morphism from An to Bn), 38
δ(p, w) (transition in deterministic automaton),

34
InA(p) (incoming bouquet), 38
ν (Nerode equivalence), 35
OutA(p) (outgoing bouquet), 38
iA (subliminal initial state), 37
p ·w (transition in deterministic automaton),

34
tA (subliminal final state), 37
A = 〈K, A, Q, I, E, T 〉, A = 〈 A, Q, I, E, T 〉

(weighted automaton), 5
A (behaviour of A), 6
CA (set of computations in A), 6
	(d), 	(c) (label of a path, a computation),

6
|d|, |c| (length of a path, a computation),

6
w(d), w(c) (weight of a path, a computa-

tion), 6
wl(d), wl(c) (weighted label of a path, a

computation), 6

B (Boolean semiring), 3

Â (determinisation of A), 58

s � t (Hadamard product of s and t), 27

K (arbitrary semiring), 2
KQ×Q (semiring of matrices with entries

in K), 2
1K (identity of the semiring K), 2

0K (zero of the semiring K), 2

RL (set of quotient of L), 34
u−1L (quotient of L by u), 34

Xϕ (amalgamation matrix), 43
〈〈〈G 〉〉〉 (submodule generated by G), 54

N (semiring of non negative integers), 3
Nmax (semiring N, max, +), 3
Nmin (semiring N, min, +), 3

Q (semiring of rational numbers), 3
Q+ (semiring of non negative rational num-

bers), 3

R (semiring of real numbers), 3
RA (reachability set of A), 57
As (minimal automaton of s), 61
ΦA (observation morphism), 61
ΨA (control morphism), 59
Rs (set of quotients of s), 60
r(s) (rank of the series s), 63
� (action defined by the quotient), 60
R+ (semiring of non negative real num-

bers), 3

L (characteristic series of L), 8
K〈〈A∗〉〉 (set of series over A∗ with coeffi-

cient in K), 7
〈s, w〉 (coefficient of w in the series s), 7
w−1s (quotient of s by w), 59

X⊗Y (tensor product of X and Y), 27
µ ⊗ κ (tensor product of µ and κ), 28

dim V (dimension of the space V), 63

Z (semiring of integers), 3
Zmax (semiring Z, max, +), 3

General Index

a co-quotient, 44
accessible, 39
action, 52, 57, 59
addition

pointwise, 7
algebra, 7
amalgamation matrix, 43
automaton

behaviour of –, 6
Boolean, 8
characteristic, 26
computation, 6

length, 6
conjugate, 43
controllable –, 59
dimension, 4
final function, 4
incidence matrix, 9
initial function, 4
morphism

bisimulation, 40
co-covering, 39
co-immersion, 39
co-quotient, 39
covering, 39
immersion, 39
In-bijective, 38
In-injective, 38
In-morphism, 39
In-surjective, 38
Out-bijective, 38
Out-injective, 38
Out-morphism, 39
Out-surjective, 38
quotient, 39
simulation, 40

observable –, 61
path, 5

label, 6
length, 6

w-label, 6
weight, 6

probabilistic, 27
state

subliminal final, 37
subliminal initial, 37

support, 8
transition

ε-transition, 38
incoming bouquet, 38
outgoing bouquet, 38
spontaneous, 38

unambiguous, 26
K-automaton, 4

bisimulation, 33

Cauchy product, see series
conformal, 39
conjugacy, 33, 43
control morphism, 59
convergence

simple, 11
covering, 34

determinisation, 58
subset construction, 58

dimension
of an automaton, 4

echelon system, 67
elimination

Gaussian –, 67

field
skew, 63

Gaussian elimination, 67
generating function, 26

Hadamard product, 27

2.16 – Finite automata based computation models MPRI 2018/2019

identity
product-star, 16
sum-star, 16

In-morphism, 44
incidence matrix, 4

language
stochastic, 27

lateralisation, 33

matrix
proper, 16
stochatic, 26
transfer, 43

minimal automaton, 34
module, 7
(left) module, 58
monoid

finitely generated, 22
of finite type, 22

morphism
control –, 59
observation –, 61

morphism (of semirings), 3
multiplication

exterior, 7

Nerode equivalence, 35

observation morphism, 60
orbit, 52
Out-morphism, 33, 36, 44

polynomial, 8
power series, see series

locally finite family, 12
summable family, 12

quotient, 34, 44, see series

rational series, see series
reachability set, 57
regular,

seerepresentation53
representation

reduced, 63
right regular – of a monoid, 53

ring, 13, 20
division, 63

semiring, 2
commutative, 2
positive, 3, 8
strong, 20
topological semiring, 11

series, 7
Cauchy product of –, 7
characteristic, 8, 26
coefficient, 7
constant term of, 13
proper, 13
proper part of, 14
quotient of –, 59
rank, 63
rational, 14, 22
support, 8

stable, see submodule
state

final, 5
initial, 5

state-space, 58
states, 4
submodule

stable –, 62
subset construction, see determinisation

tensor product, 27
topology

dense subset, 12
product, 11

transfer matrix, 43
transitions, 4
translation

right –, 53

vector space
dimension of –, 63

Work in Progress – 74 – 14 December 2018

