
Lecture notes Weighted Automata and Transducers

Lecture I — Exercises

Unless stated otherwise, the alphabet A is A = {a, b}.

1. Semiring structure. Is M = 〈N, max, +, 0, 0 〉 a semiring?

2. Positive semiring. Give an example of a semiring in which the sum of any two non-zero
elements is non-zero but which is not positive. [Hint: consider a sub-semiring of N2×2.]

3. Example of N-automaton. (a) Compute the coefficient of a3ba2ba in the series
realised by the N-automaton:

a

b

a a

(b) Give the general formula for the coefficient of every word of A∗.

4. Examples of Nmin, Nmax-automata. Let E1 be the Nmin-automaton over {a}∗ shown
in Fig. 1 (a) and E2 the Nmax-automaton shown in the same figure. Similarly, let E3 and E4
be the Nmin and Nmax-automata shown in Fig. 1 (b).

Give a formula for 〈 E1 , an〉, 〈 E2 , an〉, 〈 E3 , an〉, and 〈 E4 , an〉.

0
0 0

a |1
a |1 a |2

(a) The automata E1 and E2

0
0 0

a |2
a |2 a |1

(b) The automata E3 and E4

Figure 1: Four ‘tropical’ automata

5. A Z-automaton. Build a Z-automaton D1 such that 〈 D1 , w〉 = |w|a −|w|b , for every w

in A∗.

6. Support of Z-automata. Give an example of a Z-automaton A such that the inclusion
supp ( A ) ⊆ supp A is strict.

7. Automata construction. Let a∗ be the characteristic N-series of a∗ : a∗ =
∑

n∈N
an .

Give an ‘automatic’ proof (that is, by means of automata constructions) for:

(a∗)2 =
∑
n∈N

(n + 1)an .

8. Shortest run and Nmin-automata. Build a Nmin-automaton F1 such that, for every w

in A∗, 〈 F1 , w〉 is the minimal length of runs of ‘a’ ’s in w, that is, if w = an0 ban1 b · · · ank−1 bank ,
then 〈 F1 , w〉 = min{n0, n1, . . . , nk}.

9. Identification of a Q-automaton. Show that the final function of the Q-automaton Q2
over {a}∗ depicted on the right in Figure 2 (where every transition is labelled by a | 1) can
be specified in such a way the result is equivalent to Q1 depicted on the left.
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Figure 2: Two Q-automata

10. Ambiguous automata. Show that it is decidable whether a Boolean automaton is
unambiguous or not. [Hint: Note that this is not a result nor a proof on weighted automata
but on Boolean automata. It is put here in view of Example 49. ]

11. Representation with finite image. Let s be a K-recognisable series of A∗, realised
by a representation 〈 I, µ, T 〉 of dimension Q. Show that if µ (A∗) is a finite submonoid
of KQ×Q, then, for every k in K the set s−1(k) = {w ∈ A∗ | 〈s, w〉 = k} is a recognisable
language of A∗.

12. Support of Z-rational series. (a) Give an example of a Z-rational series over A∗

whose support is not a recognisable language of A∗.

(b) Give an example of a Z-rational series over A∗ which is an N-series (that is, all
coefficients are non-negative) and which is not an N-rational series over A∗.

13. Support of Z-rational series. (a) Prove that the support of an N-rational series
over A∗ is a recognisable language of A∗.

(b) Let s be in NRec A∗. Prove that for any k in N, the sets
s−1(k) = {w ∈ A∗ | 〈s, w〉 = k} and s−1(k + N) = {w ∈ A∗ | 〈s, w〉 � k}

are recognisable languages of A∗.

(c) Give an example of a Z-rational series s over A∗ such that there exists an integer z

such that s−1(z) is not a recognisable language of A∗.

14. Support of Zmin-rational series. (a) Let s be a Nmin-rational series over A∗.
Prove that for any k in N, the sets

s−1(k) = {w ∈ A∗ | 〈s, w〉 = k} and s−1(k + N) = {w ∈ A∗ | 〈s, w〉 � k}
are recognisable languages of A∗.

(b) Give an example of a Zmin-rational series s over A∗ such that there exists an integer z

such that s−1(z) is not a recognisable language of A∗.

15. Recognisable series in direct product of free monoids. Let K be a commutative
semiring. The two semirings K〈〈A∗〉〉 and K〈〈B∗〉〉 are canonically subalgebras of K〈〈A∗×B∗〉〉;
the injection is induced by

u �→ (u, 1B∗) and v �→ (1A∗ , v) ,
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for all u in A∗ and all v in B∗. Modulo this identification, a product (k u) (hv) is written
k h (u, v) and the extension by linearity of this notation gives the following definition.
Definition 1. Let s be in K〈〈A∗〉〉 and t be in K〈〈B∗〉〉. The tensor product of s and t,
written s ⊗ t , is the series of K〈〈A∗×B∗〉〉 defined by:

∀(u, v) ∈ A∗×B∗ 〈s ⊗ t, (u, v)〉 = 〈s, u〉 〈t, v〉 .

On the other hand, K-recognisable series over a non-free monoid M are defined, exactly as the
K-recognisable series over a free monoid, as the series realised by a K-representation 〈 I, µ, T 〉,
where µ is a morphism from M into KQ×Q.
Establish:
Proposition 2. A series s of K〈〈A∗ ×B∗〉〉 is recognisable if and only if there exists a finite
family {ri}i∈I of series of KRec A∗ and a finite family {ti}i∈I of series of KRec B∗ such
that

s =
∑
i∈I

ri ⊗ ti .

16. Distance on the semirings of series.
A distance on any set S is a map d : S ×S → R+ with the three properties: for all x, y

and z in S it holds:
(i) symmetry: d (x, y) = d (y, x) ;
(ii) positivity: d (x, y) = 0 ⇔ x = y ;
(iii) triangular inequality: d (x, z) � d (x, y) + d (y, z) .

If (iii) is replaced by the stronger property:
(iv) triangular inequality: d (x, z) � max (d (x, y) , d (y, z)) ,

then d is said to be an ultrametric distance.

(a) Show that the function defined on S by

∀x, y ∈ S d (x, y) =

{
0 if x = y

1 otherwise

is an ultrametric distance. We call it the discrete distance on S.

Classically, a sequence
(
sn

)
n∈N

of elements of S converges to s in S for the distance d if:

∀ε > 0 ∃N ∈ N ∀n > N d (sn, s) < ε .

In this way, a distance d defines a topology on S.

(b) Show that if S is equipped with the discrete distance, the only convergent sequences
are the ultimately stationnary sequences.

Two distances on S are equivalent if the same sequences converge, that is, d and d′ are
equivalent if for any sequence s =

(
sn

)
n∈N

, s converges for d if and only if it converges
for d′.

(c) Show that one can always assume that a distance is bounded by 1, that is, if d is a
distance on S, the function f defined by

∀x, y ∈ S f (x, y) = inf{d (x, y) , 1}
is a distance, equivalent to d.
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(d) Let d and d’ be two distances on S. Show that if there exist two constant C and D

in R+ \ {0} such that

∀x, y ∈ S C d (x, y) � d’ (x, y) � D d (x, y)

then d and d’ are equivalent. Is this condition necessary for d and d’ be equivalent?

Let K be a semiring. For s and t in K〈〈A∗〉〉, let e(s, t) be the gap between s and t, defined
as the minimal length of words on which s and t are different:

e(s, t) = min {n ∈ N | ∃w ∈ A∗, |w| = n and 〈s, w〉 
= 〈t, w〉} .

The gap is a generalisation of the notion of valuation of a series. The valuation v(s) of s

in K〈〈A∗〉〉 is defined by:

v(s) = e(s, 0) = min {|w| | 〈s, w〉 
= 0} = min {|w| | w ∈ supp s} .

Conversely, and if K is a ring, e(s, t) = v(s − t) .

(e) Show that the map defined by

∀s, t ∈ K〈〈A∗〉〉 d’ (s, t) = 2− e(s,t) (0.1)

is an ultrametric distance on K〈〈A∗〉〉, bounded by 1.

(f) Let c be a distance on K〈〈A∗〉〉, bounded by 1. Show that the map defined by

∀s, t ∈ K〈〈A∗〉〉 d (s, t) = 1
2

∑
n∈N

(
1
2n

max {c (〈s, w〉, 〈t, w〉) | |w| = n}
)

(0.2)
is a distance on K〈〈A∗〉〉, bounded by 1.

(g) Show that, whatever the distance c, d (s, t) � d’ (s, t) holds.

(h) Show that if c is the discrete distance, then d’ (s, t) � 2 d (s, t) holds, hence that (0.1)
and (0.2) define two equivalent distances on K〈〈A∗〉〉 if K is equipped with the discrete
distance.

(i) Show that the topology defined by d on K〈〈A∗〉〉 is the topology of the simple conver-
gence.

(j) Show that if K is a topological semiring, then so are KQ×Q (Q finite) and K〈〈A∗〉〉.
(k) Let

(
sn

)
n∈N

and
(
tn

)
n∈N

be two sequences of series in the topological semiring K〈〈A∗〉〉.
Verify that

(
sn + tn

)
n∈N

or
(
sn tn

)
n∈N

may be convergent sequences, without
(
sn

)
n∈N

or
(
tn

)
n∈N

being convergent sequences.
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