Lecture I — Exercises

Unless stated otherwise, the alphabet A is $A = \{a, b\}$.

1. Semiring structure. Is $\mathbb{M} = \langle \mathbb{N}, \max, +, 0, 0 \rangle$ a semiring?

2. **Positive semiring.** Give an example of a semiring in which the sum of any two non-zero elements is non-zero but which *is not* positive. [*Hint: consider a sub-semiring of* $\mathbb{N}^{2\times 2}$.]

3. Example of N-automaton. (a) Compute the coefficient of $a^3b a^2b a$ in the series realised by the N-automaton:

(b) Give the general formula for the coefficient of every word of A^* .

4. Examples of Nmin, Nmax-automata. Let \mathcal{E}_1 be the Nmin-automaton over $\{a\}^*$ shown in Fig. 1 (a) and \mathcal{E}_2 the Nmax-automaton shown in the same figure. Similarly, let \mathcal{E}_3 and \mathcal{E}_4 be the Nmin and Nmax-automata shown in Fig. 1 (b).

Give a formula for $\langle \mathcal{E}_1 |, a^n \rangle$, $\langle \mathcal{E}_2 |, a^n \rangle$, $\langle \mathcal{E}_3 |, a^n \rangle$, and $\langle \mathcal{E}_4 |, a^n \rangle$.

(a) The automata \mathcal{E}_1 and \mathcal{E}_2

Figure 1: Four 'tropical' automata

5. A Z-automaton. Build a Z-automaton \mathcal{D}_1 such that $\langle \mathcal{D}_1 | , w \rangle = |w|_a - |w|_b$, for every w in A^* .

6. Support of \mathbb{Z} -automata. Give an example of a \mathbb{Z} -automaton \mathcal{A} such that the inclusion supp $(|\mathcal{A}|) \subseteq |\text{supp } \mathcal{A}|$ is strict.

7. Automata construction. Let $\underline{a^*}$ be the characteristic \mathbb{N} -series of a^* : $\underline{a^*} = \sum_{n \in \mathbb{N}} a^n$. Give an 'automatic' proof (that is, by means of automata constructions) for:

$$(\underline{a^*})^2 = \sum_{n \in \mathbb{N}} (n+1) a^n \quad .$$

8. Shortest run and Nmin-automata. Build a Nmin-automaton \mathcal{F}_1 such that, for every w in A^* , $\langle \mathcal{F}_1 |, w \rangle$ is the minimal length of runs of 'a' is in w, that is, if $w = a^{n_0} b a^{n_1} b \cdots a^{n_{k-1}} b a^{n_k}$, then $\langle \mathcal{F}_1 |, w \rangle = \min\{n_0, n_1, \ldots, n_k\}$.

9. Identification of a \mathbb{Q} -automaton. Show that the final function of the \mathbb{Q} -automaton \mathcal{Q}_2 over $\{a\}^*$ depicted on the right in Figure 2 (where every transition is labelled by $a \mid 1$) can be specified in such a way the result is equivalent to \mathcal{Q}_1 depicted on the left.

Not to be circulated

Figure 2: Two Q-automata

10. Ambiguous automata. Show that it is decidable whether a Boolean automaton is unambiguous or not. [Hint: Note that this is not a result nor a proof on weighted automata but on Boolean automata. It is put here in view of Example 49.]

11. Representation with finite image. Let s be a K-recognisable series of A^* , realised by a representation $\langle I, \mu, T \rangle$ of dimension Q. Show that if $\mu(A^*)$ is a finite submonoid of $\mathbb{K}^{Q \times Q}$, then, for every k in K the set $s^{-1}(k) = \{w \in A^* \mid \langle s, w \rangle = k\}$ is a recognisable language of A^* .

12. Support of \mathbb{Z} -rational series. (a) Give an example of a \mathbb{Z} -rational series over A^* whose support is not a recognisable language of A^* .

(b) Give an example of a \mathbb{Z} -rational series over A^* which is an \mathbb{N} -series (that is, all coefficients are non-negative) and which is not an \mathbb{N} -rational series over A^* .

13. Support of \mathbb{Z} -rational series. (a) Prove that the support of an \mathbb{N} -rational series over A^* is a recognisable language of A^* .

(b) Let s be in $\mathbb{N}\operatorname{Rec} A^*$. Prove that for any k in \mathbb{N} , the sets

 $s^{-1}(k) = \{w \in A^* \mid \langle s, w \rangle = k\}$ and $s^{-1}(k + \mathbb{N}) = \{w \in A^* \mid \langle s, w \rangle \ge k\}$ are recognisable languages of A^* .

(c) Give an example of a \mathbb{Z} -rational series *s* over A^* such that there exists an integer *z* such that $s^{-1}(z)$ is not a recognisable language of A^* .

14. Support of Zmin-rational series. (a) Let s be a Nmin-rational series over A^* . Prove that for any k in \mathbb{N} , the sets

 $s^{-1}(k) = \{ w \in A^* \mid \langle s, w \rangle = k \} \text{ and } s^{-1}(k + \mathbb{N}) = \{ w \in A^* \mid \langle s, w \rangle \ge k \}$ are recognisable languages of A^* .

(b) Give an example of a Zmin-rational series s over A^* such that there exists an integer z such that $s^{-1}(z)$ is not a recognisable language of A^* .

15. Recognisable series in direct product of free monoids. Let \mathbb{K} be a commutative semiring. The two semirings $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ and $\mathbb{K}\langle\!\langle B^* \rangle\!\rangle$ are canonically subalgebras of $\mathbb{K}\langle\!\langle A^* \times B^* \rangle\!\rangle$; the injection is induced by

$$u \mapsto (u, 1_{B^*})$$
 and $v \mapsto (1_{A^*}, v)$,

Work in Progress

for all u in A^* and all v in B^* . Modulo this identification, a product (k u)(h v) is written k h(u, v) and the extension by linearity of this notation gives the following definition.

Definition 1. Let s be in $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ and t be in $\mathbb{K}\langle\!\langle B^* \rangle\!\rangle$. The tensor product of s and t, written $s \otimes t$, is the series of $\mathbb{K}\langle\!\langle A^* \times B^* \rangle\!\rangle$ defined by:

$$\forall (u,v) \in A^* \times B^* \qquad \langle s \otimes t, (u,v) \rangle = \langle s, u \rangle \langle t, v \rangle .$$

On the other hand, \mathbb{K} -recognisable series over a non-free monoid M are defined, exactly as the \mathbb{K} -recognisable series over a free monoid, as the series realised by a \mathbb{K} -representation $\langle I, \mu, T \rangle$, where μ is a morphism from M into $\mathbb{K}^{Q \times Q}$.

Establish:

Proposition 2. A series s of $\mathbb{K}\langle\!\langle A^* \times B^* \rangle\!\rangle$ is recognisable if and only if there exists a finite family $\{r_i\}_{i \in I}$ of series of $\mathbb{K}\operatorname{Rec} A^*$ and a finite family $\{t_i\}_{i \in I}$ of series of $\mathbb{K}\operatorname{Rec} B^*$ such that

$$s = \sum_{i \in I} r_i \otimes t_i \quad .$$

16. Distance on the semirings of series.

A distance on any set S is a map $\mathbf{d}: S \times S \to \mathbb{R}_+$ with the three properties: for all x, y and z in S it holds:

- (i) symmetry: $\mathbf{d}(x, y) = \mathbf{d}(y, x)$;
- (ii) positivity: $\mathbf{d}(x, y) = 0 \Leftrightarrow x = y;$
- (iii) triangular inequality: $\mathbf{d}(x, z) \leq \mathbf{d}(x, y) + \mathbf{d}(y, z)$.
- If (iii) is replaced by the stronger property:
- (iv) triangular inequality: $\mathbf{d}(x, z) \leq \max(\mathbf{d}(x, y), \mathbf{d}(y, z))$,

then ${\bf d}$ is said to be an *ultrametric distance*.

(a) Show that the function defined on S by

$$\forall x, y \in S$$
 $\mathbf{d}(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise} \end{cases}$

is an ultrametric distance. We call it the *discrete distance* on S.

Classically, a sequence $(s_n)_{n \in \mathbb{N}}$ of elements of S converges to s in S for the distance **d** if:

 $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \qquad \mathbf{d}(s_n, s) < \varepsilon$.

In this way, a distance \mathbf{d} defines a *topology* on S.

(b) Show that if S is equipped with the discrete distance, the only convergent sequences are the ultimately stationnary sequences.

Two distances on S are *equivalent* if the same sequences converge, that is, **d** and **d'** are equivalent if for any sequence $s = (s_n)_{n \in \mathbb{N}}$, s converges for **d** if and only if it converges for **d'**.

(c) Show that one can always assume that a distance is bounded by 1, that is, if \mathbf{d} is a distance on S, the function \mathbf{f} defined by

$$\forall x, y \in S$$
 $\mathbf{f}(x, y) = \inf{\mathbf{d}(x, y), 1}$

is a distance, equivalent to $\mathbf{d}.$

Not to be circulated

– 3 –

2 December 2018

(d) Let **d** and **d**' be two distances on S. Show that if there exist two constant C and D in $\mathbb{R}_+ \setminus \{0\}$ such that

$$\forall x, y \in S$$
 $C \mathbf{d}(x, y) \leq \mathbf{d}'(x, y) \leq D \mathbf{d}(x, y)$

then d and d' are equivalent. Is this condition necessary for d and d' be equivalent?

Let K be a semiring. For s and t in $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$, let $\mathbf{e}(s,t)$ be the gap between s and t, defined as the minimal length of words on which s and t are different:

 $\mathbf{e}(s,t) = \min \left\{ n \in \mathbb{N} \mid \exists w \in A^*, \quad |w| = n \text{ and } \langle s, w \rangle \neq \langle t, w \rangle \right\} .$

The gap is a generalisation of the notion of *valuation* of a series. The valuation $\mathbf{v}(s)$ of s in $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ is defined by:

$$\mathbf{v}(s) = \mathbf{e}(s,0) = \min\{|w| \mid \langle s, w \rangle \neq 0\} = \min\{|w| \mid w \in \text{supp } s\}$$

Conversely, and if \mathbb{K} is a *ring*, $\mathbf{e}(s,t) = \mathbf{v}(s-t)$.

(e) Show that the map defined by

$$\forall s, t \in \mathbb{K} \langle\!\langle A^* \rangle\!\rangle \qquad \mathbf{d}^{\prime}(s, t) = 2^{-\mathbf{e}(s, t)} \tag{0.1}$$

is an ultrametric distance on $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$, bounded by 1.

(f) Let **c** be a distance on $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$, bounded by 1. Show that the map defined by

$$\forall s, t \in \mathbb{K} \langle\!\langle A^* \rangle\!\rangle \qquad \mathbf{d} \left(s, t\right) = \frac{1}{2} \sum_{n \in \mathbb{N}} \left(\frac{1}{2^n} \max\left\{ \mathbf{c} \left(\langle s, w \rangle, \langle t, w \rangle \right) \mid |w| = n \right\} \right)$$
(0.2)

is a distance on $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$, bounded by 1.

- (g) Show that, whatever the distance \mathbf{c} , $\mathbf{d}(s,t) \leq \mathbf{d}'(s,t)$ holds.
- (h) Show that if **c** is the discrete distance, then **d**' $(s,t) \leq 2$ **d** (s,t) holds, hence that (0.1) and (0.2) define two equivalent distances on $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ if \mathbb{K} is equipped with the discrete distance.
- (i) Show that the topology defined by **d** on $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ is the topology of the simple convergence.
- (j) Show that if \mathbb{K} is a topological semiring, then so are $\mathbb{K}^{Q \times Q}$ (Q finite) and $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$.
- (k) Let $(s_n)_{n\in\mathbb{N}}$ and $(t_n)_{n\in\mathbb{N}}$ be two sequences of series in the topological semiring $\mathbb{K}\langle\!\langle A^*\rangle\!\rangle$. Verify that $(s_n + t_n)_{n\in\mathbb{N}}$ or $(s_n t_n)_{n\in\mathbb{N}}$ may be convergent sequences, without $(s_n)_{n\in\mathbb{N}}$ or $(t_n)_{n\in\mathbb{N}}$ being convergent sequences.