Lecture I - Exercises

Unless stated otherwise, the alphabet A is $A=\{a, b\}$.

1. Semiring structure. Is $\mathbb{M}=\langle\mathbb{N}, \max ,+, 0,0\rangle$ a semiring?
2. Positive semiring. Give an example of a semiring in which the sum of any two non-zero elements is non-zero but which is not positive. [Hint: consider a sub-semiring of $\mathbb{N}^{2 \times 2}$.]
3. Example of \mathbb{N}-automaton. (a) Compute the coefficient of $a^{3} b a^{2} b a$ in the series realised by the \mathbb{N}-automaton:

(b) Give the general formula for the coefficient of every word of A^{*}.
4. Examples of $\mathbb{N} \min , \mathbb{N} m a x$-automata. Let \mathcal{E}_{1} be the $\mathbb{N} m i n$-automaton over $\{a\}^{*}$ shown in Fig. 1 (a) and \mathcal{E}_{2} the \mathbb{N} max-automaton shown in the same figure. Similarly, let \mathcal{E}_{3} and \mathcal{E}_{4} be the \mathbb{N} min and \mathbb{N} max-automata shown in Fig. 1 (b).
Give a formula for $\left\langle\mathcal{E}_{1} \mid, a^{n}\right\rangle,\left\langle\mathcal{E}_{2} \mid, a^{n}\right\rangle,\langle | \mathcal{E}_{3}\left|, a^{n}\right\rangle$, and $\langle | \mathcal{E}_{4}\left|, a^{n}\right\rangle$.

Figure 1: Four 'tropical' automata
5. A \mathbb{Z}-automaton. Build a \mathbb{Z}-automaton \mathcal{D}_{1} such that $\left\langle\mathcal{D}_{1} \mid, w\right\rangle=|w|_{a}-|w|_{b}$, for every w in A^{*}.
6. Support of \mathbb{Z}-automata. Give an example of a \mathbb{Z}-automaton \mathcal{A} such that the inclusion supp $(|\mathcal{A}| \subseteq \mid$ supp $\mathcal{A} \mid$ is strict.
7. Automata construction. Let $\underline{a^{*}}$ be the characteristic \mathbb{N}-series of $a^{*}: \underline{a^{*}}=\sum_{n \in \mathbb{N}} a^{n}$. Give an 'automatic' proof (that is, by means of automata constructions) for:

$$
\left(\underline{a^{*}}\right)^{2}=\sum_{n \in \mathbb{N}}(n+1) a^{n}
$$

8. Shortest run and \mathbb{N} min-automata. Build a \mathbb{N} min-automaton \mathcal{F}_{1} such that, for every w in $A^{*},\langle | \mathcal{F}_{1}|, w\rangle$ is the minimal length of runs of ' a ''s in w, that is, if $w=a^{n_{0}} b a^{n_{1}} b \cdots a^{n_{k-1}} b a^{n_{k}}$, then $\langle | \mathcal{F}_{1}|, w\rangle=\min \left\{n_{0}, n_{1}, \ldots, n_{k}\right\}$.
9. Identification of a \mathbb{Q}-automaton. Show that the final function of the \mathbb{Q}-automaton \mathcal{Q}_{2} over $\{a\}^{*}$ depicted on the right in Figure 2 (where every transition is labelled by $a \mid 1$) can be specified in such a way the result is equivalent to \mathcal{Q}_{1} depicted on the left.

Figure 2: Two Q-automata
10. Ambiguous automata. Show that it is decidable whether a Boolean automaton is unambiguous or not. [Hint: Note that this is not a result nor a proof on weighted automata but on Boolean automata. It is put here in view of Example 49.]
11. Representation with finite image. Let s be a \mathbb{K}-recognisable series of A^{*}, realised by a representation $\langle I, \mu, T\rangle$ of dimension Q. Show that if $\mu\left(A^{*}\right)$ is a finite submonoid of $\mathbb{K}^{Q \times Q}$, then, for every k in \mathbb{K} the set $s^{-1}(k)=\left\{w \in A^{*} \mid\langle s, w\rangle=k\right\}$ is a recognisable language of A^{*}.
12. Support of \mathbb{Z}-rational series. (a) Give an example of a \mathbb{Z}-rational series over A^{*} whose support is not a recognisable language of A^{*}.
(b) Give an example of a \mathbb{Z}-rational series over A^{*} which is an \mathbb{N}-series (that is, all coefficients are non-negative) and which is not an \mathbb{N}-rational series over A^{*}.
13. Support of \mathbb{Z}-rational series. (a) Prove that the support of an \mathbb{N}-rational series over A^{*} is a recognisable language of A^{*}.
(b) Let s be in $\mathbb{N} R e c A^{*}$. Prove that for any k in \mathbb{N}, the sets

$$
s^{-1}(k)=\left\{w \in A^{*} \mid\langle s, w\rangle=k\right\} \text { and } s^{-1}(k+\mathbb{N})=\left\{w \in A^{*} \mid\langle s, w\rangle \geqslant k\right\}
$$

are recognisable languages of A^{*}.
(c) Give an example of a \mathbb{Z}-rational series s over A^{*} such that there exists an integer z such that $s^{-1}(z)$ is not a recognisable language of A^{*}.

14. Support of \mathbb{Z} min-rational series.

(a) Let s be a \mathbb{N} min-rational series over A^{*}.

Prove that for any k in \mathbb{N}, the sets

$$
s^{-1}(k)=\left\{w \in A^{*} \mid\langle s, w\rangle=k\right\} \quad \text { and } \quad s^{-1}(k+\mathbb{N})=\left\{w \in A^{*} \mid\langle s, w\rangle \geqslant k\right\}
$$

are recognisable languages of A^{*}.
(b) Give an example of a \mathbb{Z} min-rational series s over A^{*} such that there exists an integer z such that $s^{-1}(z)$ is not a recognisable language of A^{*}.
15. Recognisable series in direct product of free monoids. Let \mathbb{K} be a commutative semiring. The two semirings $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ and $\mathbb{K}\left\langle\left\langle B^{*}\right\rangle\right\rangle$ are canonically subalgebras of $\mathbb{K}\left\langle\left\langle A^{*} \times B^{*}\right\rangle\right\rangle$; the injection is induced by

$$
u \mapsto\left(u, 1_{B^{*}}\right) \quad \text { and } \quad v \mapsto\left(1_{A^{*}}, v\right)
$$

for all u in A^{*} and all v in B^{*}. Modulo this identification, a product $(k u)(h v)$ is written $k h(u, v)$ and the extension by linearity of this notation gives the following definition.
Definition 1. Let s be in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ and t be in $\mathbb{K}\left\langle\left\langle B^{*}\right\rangle\right\rangle$. The tensor product of s and t, written $s \otimes t$, is the series of $\mathbb{K}\left\langle\left\langle A^{*} \times B^{*}\right\rangle\right\rangle$ defined by:

$$
\forall(u, v) \in A^{*} \times B^{*} \quad\langle s \otimes t,(u, v)\rangle=\langle s, u\rangle\langle t, v\rangle .
$$

On the other hand, \mathbb{K}-recognisable series over a non-free monoid M are defined, exactly as the \mathbb{K}-recognisable series over a free monoid, as the series realised by a \mathbb{K}-representation $\langle I, \mu, T\rangle$, where μ is a morphism from M into $\mathbb{K}^{Q \times Q}$.
Establish:
Proposition 2. A series s of $\mathbb{K}\left\langle\left\langle A^{*} \times B^{*}\right\rangle\right\rangle$ is recognisable if and only if there exists a finite family $\left\{r_{i}\right\}_{i \in I}$ of series of $\mathbb{K} \operatorname{Rec} A^{*}$ and a finite family $\left\{t_{i}\right\}_{i \in I}$ of series of $\mathbb{K} \operatorname{Rec} B^{*}$ such that

$$
s=\sum_{i \in I} r_{i} \otimes t_{i} .
$$

16. Distance on the semirings of series.

A distance on any set S is a map $\mathbf{d}: S \times S \rightarrow \mathbb{R}_{+}$with the three properties: for all x, y and z in S it holds:
(i) symmetry: $\mathbf{d}(x, y)=\mathbf{d}(y, x)$;
(ii) positivity: $\mathbf{d}(x, y)=0 \Leftrightarrow x=y$;
(iii) triangular inequality: $\mathbf{d}(x, z) \leqslant \mathbf{d}(x, y)+\mathbf{d}(y, z)$.

If (iii) is replaced by the stronger property:
(iv) triangular inequality: $\mathbf{d}(x, z) \leqslant \max (\mathbf{d}(x, y), \mathbf{d}(y, z))$,
then \mathbf{d} is said to be an ultrametric distance.
(a) Show that the function defined on S by

$$
\forall x, y \in S \quad \mathbf{d}(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { otherwise }\end{cases}
$$ is an ultrametric distance. We call it the discrete distance on S.

Classically, a sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ of elements of S converges to s in S for the distance \mathbf{d} if:

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n>N \quad \mathbf{d}\left(s_{n}, s\right)<\varepsilon
$$

In this way, a distance d defines a topology on S.
(b) Show that if S is equipped with the discrete distance, the only convergent sequences are the ultimately stationnary sequences.

Two distances on S are equivalent if the same sequences converge, that is, \mathbf{d} and \mathbf{d}^{\prime} are equivalent if for any sequence $s=\left(s_{n}\right)_{n \in \mathbb{N}}, s$ converges for \mathbf{d} if and only if it converges for \mathbf{d}^{\prime}.
(c) Show that one can always assume that a distance is bounded by 1 , that is, if \mathbf{d} is a distance on S, the function \mathbf{f} defined by

$$
\forall x, y \in S \quad \mathbf{f}(x, y)=\inf \{\mathbf{d}(x, y), 1\}
$$

is a distance, equivalent to \mathbf{d}.
(d) Let \mathbf{d} and d' be two distances on S. Show that if there exist two constant C and D in $\mathbb{R}_{+} \backslash\{0\}$ such that

$$
\forall x, y \in S \quad C \mathbf{d}(x, y) \leqslant \mathbf{d}^{\prime}(x, y) \leqslant D \mathbf{d}(x, y)
$$

then \mathbf{d} and \mathbf{d}^{\prime} are equivalent. Is this condition necessary for \mathbf{d} and \mathbf{d}^{\prime} be equivalent?

Let \mathbb{K} be a semiring. For s and t in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$, let $\mathbf{e}(s, t)$ be the gap between s and t, defined as the minimal length of words on which s and t are different:

$$
\mathbf{e}(s, t)=\min \left\{n \in \mathbb{N}\left|\exists w \in A^{*}, \quad\right| w \mid=n \text { and }\langle s, w\rangle \neq\langle t, w\rangle\right\}
$$

The gap is a generalisation of the notion of valuation of a series. The valuation $\mathbf{v}(s)$ of s in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ is defined by:

$$
\mathbf{v}(s)=\mathbf{e}(s, 0)=\min \{|w| \mid\langle s, w\rangle \neq 0\}=\min \{|w| \mid w \in \operatorname{supp} s\}
$$

Conversely, and if \mathbb{K} is a ring, $\mathbf{e}(s, t)=\mathbf{v}(s-t)$.
(e) Show that the map defined by

$$
\begin{equation*}
\forall s, t \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad \mathbf{d}^{\prime}(s, t)=2^{-\mathbf{e}(s, t)} \tag{0.1}
\end{equation*}
$$

is an ultrametric distance on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right.$, bounded by 1 .
(f) Let \mathbf{c} be a distance on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$, bounded by 1 . Show that the map defined by

$$
\begin{equation*}
\forall s, t \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \quad \mathbf{d}(s, t)=\frac{1}{2} \sum_{n \in \mathbb{N}}\left(\frac{1}{2^{n}} \max \{\mathbf{c}(\langle s, w\rangle,\langle t, w\rangle)| | w \mid=n\}\right) \tag{0.2}
\end{equation*}
$$

is a distance on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$, bounded by 1 .
(g) Show that, whatever the distance $\mathbf{c}, \mathbf{d}(s, t) \leqslant \mathbf{d}^{\prime}(s, t)$ holds.
(h) Show that if \mathbf{c} is the discrete distance, then $\mathbf{d}^{\prime}(s, t) \leqslant 2 \mathbf{d}(s, t)$ holds, hence that (0.1) and (0.2) define two equivalent distances on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ if \mathbb{K} is equipped with the discrete distance.
(i) Show that the topology defined by \mathbf{d} on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ is the topology of the simple convergence.
(j) Show that if \mathbb{K} is a topological semiring, then so are $\mathbb{K}^{Q \times Q}$ (Q finite) and $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$.
(k) Let $\left(s_{n}\right)_{n \in \mathbb{N}}$ and $\left(t_{n}\right)_{n \in \mathbb{N}}$ be two sequences of series in the topological semiring $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$. Verify that $\left(s_{n}+t_{n}\right)_{n \in \mathbb{N}}$ or $\left(s_{n} t_{n}\right)_{n \in \mathbb{N}}$ may be convergent sequences, without $\left(s_{n}\right)_{n \in \mathbb{N}}$ or $\left(t_{n}\right)_{n \in \mathbb{N}}$ being convergent sequences.

