
Five lectures in the theory of
Weighted Automata and Transducers

Jacques Sakarovitch
IRIF/CNRS–Université Paris Diderot & Telecom-ParisTech

December 2018 – January 2019

Lectures notes of the Master Parisien de Recherche en Informatique

Course 2.16 — Finite automata based computation models



c©2018 Jacques Sakarovitch



Contents

I The model of weighted automata
Rationality and recognisability 1

II Morphisms of weighted automata
Conjugacy and minimal quotient 33

IIIReduction of weighted automata
Controllability and observability 49

Notation Index 69

General Index 71

These lectures notes are intended to be as self-contained as possible. However,
many complements — sometimes in a slightly different setting, as my point of view
has evolved — are to be found in my book Elements of Automata Theory (Cambridge
University Press, 2009). References to this work are indicated in marginal notes.

Every lecture ends with an exercise section.

iii





Lecture I

The model of weighted automata
Rationality and recognisability

This chapter is aimed at
(i) introducing, or recalling, the notions of weighted automata and of represen-

tations, that are the subject of the lectures to come,
(ii) giving the proof of their equivalence which is considered here as a basic

property,
(iii) and fixing the terminology and notation.
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1 The model of K-automata

For sake of simplicity, we first restrict ourselves to automata over a free mon-
oid A∗; the generalisation to automata over other monoids, at least over graded
ones (cf.Section 2.4), is straightforward.

Automata with multiplicity or weighted automata are perfectly synonymous.
The latter is preferred, at least in English, for its conciseness. In French, ‘automate
à poids’ is, as are neckties of the same kind, rather inelegant. Let us mention that
weight is often attached to ‘numerical’ multiplicity in the literature but we do not
restrict ourselves to this case here.

1.1 Weight semirings

Semirings. A semiring K is a structure with both an addition and a multiplication,
with the usual distributivity laws. More precisely:

• SA1. K is a commutative monoid for addition, written +, whose neutral element,
called the zero of K, is written 0K (or 0).

• SA2. K is a monoid (not necessarily commutative) for multiplication, written by
a dot, or more often by simple juxtaposition, whose neutral element, called
the identity of K, is written 1K (or 1).

• SA3. The multiplication distributes left and right over the addition; that is,

∀i, j, k ∈ K i · (j + k) = (i · j) + (i · k) and (i + j) · k = (i · k) + (j · k) .

• SA4. The neutral element for addition is a zero for multiplication (which justifies
the terminology):

∀k ∈ K k · 0K = 0K · k = 0K .

If 1K = 0K , then K is reduced to this single element. In the sequel, we assume
that 1K �= 0K .

A semiring is commutative when its multiplication is a commutative operation.
The semiring structure is the most rudimentary one such that matrices with

entries in that structure can be multiplied with the usual laws. On the other hand,
if K is a semiring, then KQ×Q, the set of square matrices of dimension Q with entries
in K and equipped with the usual addition and multiplication, is a semiring.

Remark 1. We use sets rather than integers as a dimension for vectors and matrices.
The easiness in writing it brings — which puts the emphasis on the fact that listing
values in a vector or a matrix is rather about indexing these values than comparing
their rank — proves to be very convenient.
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The semirings we use. We shall be concerned mostly with the following four
classes of weight semirings:

• First, the Boolean semiring B, which indeed means ‘no weight’.

• Second, the classical semirings of numbers:
N, Z, Q+, Q, R+, R,

that is, the non-negative integers, the integers, the non-negative rationals, the
rationals, the non-negative reals, and the reals.

• Third, the so-called tropical semirings:
Nmin = 〈N ∪ {+∞}, min, + 〉 , Nmax = 〈N ∪ {−∞}, max, + 〉 ,
Zmax = 〈Z ∪ {−∞}, max, + 〉 , Qmax = 〈Q+ ∪ {−∞}, max, + 〉 , etc.

For all these semirings, the identity 1K is the number 0; the zero 0K is either +∞
when the ‘addition’ is min or −∞ when the ‘addition’ is max.

• and finally the semirings of subsets and of series:

– 〈P (A∗), ∪, · 〉 , the semiring of subsets of the free monoid,

– its subsemiring of rational languages Rat A∗ ,

– K〈〈A∗〉〉 , the semiring of series1 over A∗ with multiplicity in K, etc.

• And, of course, the semirings of (square) matrices with entries in all the above
semirings.

In the sequel, K denotes a semiring.

Morphisms. If K and L are semirings, a map ϕ : K → L is a morphism of
semirings if

∀k, l ∈ K

{
ϕ (k + l) = ϕ (k) + ϕ (l) and ϕ (0K) = 0L ,

ϕ (k l) = ϕ (k) ϕ (l) and ϕ (1K) = 1L .

That is, ϕ is a morphism of monoids for both the additive and multiplicative struc-
tures of K and L.

A semiring K is positive if both the sum and the product of any two non-zero
elements of K are non-zero; in other words, if the support map σ : K → B such
that σ (k) = 1B for all k �= 0K (and σ (0K) = 0B ) is a morphism of semirings.
The semirings N, Zmin or Zmax (!), Q+ and Rat A∗ are positive, while Z, Q and R

are not.

Exercises See Exer. 1. to 2., p.29.

1that will be defined below.
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1.2 The graph definition of K-automata

A classical, or Boolean, automaton A is a labelled directed graph, denoted2 as a
5-tuple A = 〈 A, Q, I, E, T 〉 , where A is the (input) alphabet, Q the set of states,
I and T the sets of initial and final states, and E ⊆ Q×A×Q is the set of transitions
of A.

An automaton over A∗ with weight in K, or K-automaton over A∗ is a gener-
alisation of the former: it is a labelled directed graph. We develop and complete
this definition below. In the next section, we build on the identification of a graph
with its incidence matrix and the proofs will be performed systematically with mat-
rix computations. The essence of an automaton however remains that of a graph
and the behaviour of an automaton is defined in the language of graphs. We also
continue to use the graph representation and its vocabulary to aid intuition.

We take here a definition of automata that is restricted compared to the one
taken in EAT. It fits our needs for the developments we want to present and wecf.EAT, p. 402

lose nothing as the more general definition is proved to be equivalent to the restric-
ted one, when it makes sense. We thus save the task of proving this equivalence
and, more important, of tackling the problem of characterising when this general
definition makes sense. On the other hand, we have to prove the equivalence with
automata ‘with spontaneous transitions’ which will make for the general definition.
This happens to be somewhat subtle and difficult and will not be considered in these
lectures.

The definition of K-automata.

Definition 2. A K-automaton over A∗ is a labelled directed graph together with
two maps from its set of vertices to K. Its vertices are called states; its edges, called
transitions, are associated with weighted labels, that are pairs (a, k), with k in K

and a in A, also written k a or a |k depending on the context.

We denote a K-automaton over A∗ by A = 〈K, A, Q, I, E, T 〉 where:

• K is the weight semiring and A is the alphabet which generates A∗.

• Q is the set of states of A, also called the dimension of A.

• I and T are respectively the initial and final functions, functions from Q

into K, that is, elements of KQ , and

• E ⊆ Q×A×K×Q, the set of weighted transitions, is the graph of a partial
function from Q×A×Q into K \ {0K}.

2The notation in EAT is A = 〈 Q, A, E, I, T 〉 . It has been changed in order to be consistent
with the use of the Awali platform.
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Let e = (p, x, k, q) be a transition of A:

• the source of e, written ι(e), is p and the destination of e, written τ(e), is q,

• the label of e, written �(e), is x,

• the weight of e, written w(e), is k, and

• the weighted label, w-label for short, of e, written wl(e), is the monomial k x.

The assumption that E is a partial function implies that two distinct transitions
cannot have the same source, destination, and label, the one that it is a partial
function into K \ {0K} implies that the weight of a transition cannot be equal to 0K.

A state p is said to be initial (resp. final) if I(p) (resp. T (p)) is different from 0K,
that is, if p is in the support of the function I (resp. T ).

Figure 1 shows two N-automata, B1 (left) and C1 (middle) and one Nmin-auto-
maton M1 (right).

b

a a

b b

b

a 2a

b 2b

0 0 0 0
a |0

b |1

a |1

b |0
Figure 1: Two N-automata and one Nmin-automaton

One reads on this figure conventions commonly taken when drawing weighted
automata. For classical semirings of numbers, the multiplicative identity element 1K
remains implicit, hence incoming (resp. outgoing) arrows without label indicate
that the initial (resp. final) map gives the corresponding state the value 1K, and
accordingly a transition without weight is supposed to be given the weight 1K. For
tropical semirings, the multiplicative identity which is the number 0 is explicitely
written, and so is the weight 1 which is just another element of the weight semiring.
In this case also, a monomial k a is often written as a |k.

The automaton A is finite if the set E is finite, which is equivalent, when the
alphabet A is finite, to the condition that Q be finite. Every automaton we consider
in this lecture (but not in this course) is finite.

Most often, the weight semiring K is understood from the context and we simply
write A = 〈 A, Q, I, E, T 〉 . In the sequel, A denotes a K-automaton.

Paths and computations. Since A is a graph, a path in A is a sequence of
transitions such that the destination of every transition is the source of the next
one; it can be written as:

d1 = e1e2 · · · en or as d1 = p0
k1 x1−−−−→ p1

k2 x2−−−−→ p2 · · · kn xn−−−−→ pn .
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The label, respectively the weight and the w-label, of a path d, is the product of the
labels, respectively of the weights and of the w-labels, of the transitions of d. For
instance,

�(d1) = x1 x2 · · · xn , w(d1) = k1 k2 · · · kn ,
and wl(d1) = (k1 k2 · · · kn)x1 x2 · · · xn .

A computation in A is a path together with the values of the initial and final functions
at the ends of the path. For instance, the computation corresponding to the above
path d1 is c1 = (I(p0), d1, T (pn)) and the label, the weight and the weighted label
of c1 are

�(c1) = �(d1) , w(c1) = I(p0)w(d1)T (pn) and wl(c1) = I(p0)wl(d1)T (pn) .

The length of a path d, or of a computation c, is the number of transitions it contains
and is denoted by |d| (or |c|). For instance, |c1| = |d1| = n. The weighted label of a
computation associated with a path that does not start at an initial state or end at
a final state is hence equal to 0K.

The set of computations of an automaton A is denoted by CA. (The seemingly
tetrapylotomic distinction between path and computation will be used later on — in
Lemma 7 for instance — but may be forgotten in most cases.)

The weight of a word and the behaviour of a K-automaton. The weight,
or multiplicity, of a word w in A is the sum of the weights of the computations in A
whose word label is w. Hence the automaton A associates with every word in A∗ a
value in K, that is, defines a map from A∗ to K that we denote by A :

∀w ∈ A∗ A (w) =
∑

c∈CA, �(c)=w

w(c) . (1.1)

This sum (1.1) is well-defined if w is the word label of a finite number only of
computations in A. With the definition we have taken for automata, this condition
holds for every w in A∗ when Q is finite: a word of length n is the label of a
computation of length n and there are only a finite number of those in A.3

This function A : A∗ → K is said to be realised by A and is called the behaviour
of A. It is the natural generalisation of the language accepted by a Boolean auto-
maton: the latter can be seen as an application from A∗ to B that maps a word w

to 1B or 0B according to whether w belongs or not to the language.

Example 3. (Automata of Figure 1). A simple calculation yields the behaviour
of B1: for every w in {a, b}∗, B1 (w) = |w|b holds.

3Another case where the weight of every word is well-defined even when Q is infinite is when
the structure of A insures that every word is the label of at most a finite number of computations,
e.g.when A is deterministic or sequential, a case that will be considered in Lecture III.
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It is as simple to determine that M1 (w) = min{|w|a, |w|b} for every w in {a, b}∗.
If we use the convention that each word w of {a, b}∗ is considered as a number

written in binary, interpreting a as the digit 0 and b as the digit 1, and if we write w

for the integer represented by the word w, it is easy to verify that w is computed
by C1, in the sense that C1 (w) = w , for every w in {a, b}∗.

Before going further, we take a number of notation and definitions concerning
these maps from A∗ into K.

1.3 Series over A∗ with coefficients in K

For any set E, the set of maps from E to K is usually written KE and canonically
inherits from K a structure of semiring when equipped with pointwise addition and
multiplication.

When E is a monoid A∗, we equip KA∗ with another multiplication which derives
from the monoid structure of A∗ and we thus use different notation and terminology
for these maps together with this other semiring structure.

Any map from A∗ to K is a formal power series over A∗ with coefficients in K —
abbreviated as K-series over A∗, or even as series if there is ambiguity neither on K

nor on A∗. The set of these series is written K〈〈A∗〉〉 . If s is a series, the image of
an element w of A∗ by s is written 〈s, w〉 rather than s(w) or (w)s and is called
the coefficient of w in s.
For all s and t in K〈〈A∗〉〉, and all k in K, the following operations are defined:

(i) the (left and right) ‘exterior’ multiplications:

k s and sk by ∀w ∈ A∗ 〈k s, w〉 = k〈s, w〉 and 〈sk, w〉 = 〈s, w〉k
(ii) the pointwise addition:

s + t by ∀w ∈ A∗ 〈s + t, w〉 = 〈s, w〉 + 〈t, w〉
(iii) and the Cauchy product:

s t by ∀w ∈ A∗ 〈s t, w〉 =
∑

u,v∈A∗
uv=w

〈s, u〉〈t, v〉 . (1.2)

Addition makes K〈〈A∗〉〉 a commutative monoid; together with the two exterior
multiplications, it makes K〈〈A∗〉〉 a left, and right, module over K.

For every w in A∗, the number of factorisations uv = w is finite, hence the sum
in (1.2) is well-defined, and so is the Cauchy product of two series s and t in K〈〈A∗〉〉.
This product, together with the pointwise addition, makes K〈〈A∗〉〉 a semiring and,
together with the exterior multiplications, a left, and right, algebra over K.

With these notations and definitions, the behaviour A of A is a series of K〈〈A∗〉〉,
the coefficient of w in A is 〈 A , w〉 and Example 3 is rewritten as 〈 B1 , w〉 = |w|b ,
〈 C1 , w〉 = w and 〈 M1 , w〉 = min{|w|a, |w|b} , for every w in {a, b}∗.
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Lemma 4. Let Q be a finite set. The semiring of square matrices of dimen-
sion Q with entries in K〈〈A∗〉〉 is isomorphic to that of series over A∗ with coefficient
in KQ×Q, that is, K〈〈A∗〉〉Q×Q ∼= KQ×Q〈〈A∗〉〉 .

Support of a series – polynomials – characteristic series. The support of
a series s, written supp s , is the subset of words in A∗ whose coefficient in s is
not 0K. For instance, supp B1 = A∗bA∗ , and supp M1 = A∗ (since 0 is not the
zero of Nmin).

A series with finite support is a polynomial; the set of polynomials over A∗ with
coefficients in K is written K〈A∗〉. It is a sub-algebra of K〈〈A∗〉〉.

Conversely, if L is a language of A∗, L denotes the characteristic series of L

in N〈〈A∗〉〉 or, more generally, in K〈〈A∗〉〉, for any K given by the context:

∀w ∈ A∗ 〈L, w〉 =


 1K if w ∈ L

0K otherwise .

Accordingly, a series is said to be characteristic if it is equal to the characteric series
of its own support.

Support of an automaton – characteristic automata. A Boolean automaton
is exactly a B-automaton and will usually be denoted as such to avoid ambiguity.

Every K-automaton A can be transformed into a B-automaton, called the sup-
port of A , denoted by supp A , and obtained by replacing every non-zero (non 0K)
weight on transitions by 1 = 1B . Of course, supp ( A ) may be strictly contained in
supp A . The equality supp ( A ) = supp A holds if K is positive.

If the weight of all transitions of a K-automaton A, as well as the non-zero values
of the initial and final functions, are equal to 1K — as it is the case for B1 for instance
— then A is said to be characteristic.

Given a Boolean automaton A and a semiring K (usually it is N), A denotes the
characteristic K-automaton the support of which is A. Of course, A is not equal
to A , which is a characteristic series. More precisely, if A is a Boolean automaton
over A∗, then, for every w of A∗, 〈 A , w〉 is the number of successful computations
labelled by w in A, that is, the degree of ambiguity of w in A.

Exercises See Exer. 3. to 6., p.29.

2 Rationality

We give a first characterisation of the behaviour of finite weighted automata. It is
not the one which will be most important for us, not the one on which we build

Work in Progress – 8 – 7 December 2018



Lecture notes Weighted Automata and Transducers

the developments to come in the next two lectures. It is of interest though for three
reasons; first because it is the generalisation of the characterisation that is most
common when dealing with classical Boolean automata; second because it is the one
that holds also for (weighted) automata on non free monoids, third because it paves
the way to the second characterisation we are aiming at.

2.1 The matrix description of K-automata

Graphs can be defined by their incidence matrix; we extend this description to
automata.

We write the set E as a square matrix of dimension Q: every entry Ep,q is the sum
of the weighted labels of all transitions in A from p to q, thus a linear combination
of letters in A with coefficients in K, hence in K〈A∗〉, and can indeed be seen as the
label of a unique transition that goes from p to q. Along the same line, we see I

as a row-vector4 and T as a column-vector in KQ and the K-automaton A is then
written as A = 〈 I, E, T 〉 .

Remark 5. Writing E rather than E for the incidence matrix would be more correct
as it would mark the distinction between the set of transitions and the matrix that
is derived from it. Such a distinction has proved to be necessary when studying
the validity of weighted automata with spontaneous transitions (transitions whose
label is the empty word, a case which is ruled out in the model we study here) but
we shall not study this question in these lectures. On the contrary, we shall deal
with the set of transitions of an automaton almost exclusively under the form of the
incidence matrix, for which we choose the simpler and lighter notation.

Example 6 (Example 3 cont.). The N-automaton B1 over {a, b}∗ shown in Figure 1
(left) may be written as

B1 =
〈(

1 0
)

,

(
a + b b

0 a + b

)
,

(
0
1

)〉
,

whereas the N-automaton C1 shown in Figure 1 (middle) is written as

C1 =
〈(

1 0
)

,

(
a + b b

0 2a + 2b

)
,

(
0
1

)〉
.

The Nmin-automaton M1 shown in Figure 1 (right) is written as

M1 =
〈(

0 0
)

,

(
0a + 1b +∞

+∞ 1a + 0b

)
,

(
0
0

)〉
,

4I recently became aware that in linear algebra treatises all vectors are column-vectors by defin-
ition and a row-vector is the transpose of a column-vector. It seems to me that having both
possibilities is handier and I stay with my habit, at least in these lecture notes.
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The description of the transitions of an automaton by a matrix is justified by
the fact that a walk over a graph corresponds to a matrix multiplication. This is
expressed by the following statement.

Lemma 7. Let A = 〈 I, E, T 〉 be a K-automaton over A∗ of finite dimension.
For every integer n, En is the matrix of the sums of the weighted labels of paths of
length n.

Proof. By induction on n. The assertion is true for n = 1 (and also for n = 0 by
convention). The definition of the (n + 1)th power of E is given by the equation:

∀p, q ∈ Q (En+1)p,q =
∑
r∈Q

(En)p,r Er,q .

Every path of length n + 1 is the concatenation of a path of length n with a path of
length 1, that is, a single transition. We can therefore write5

{
c

∣∣∣∣ c := p −−→
A

q , |c| = n + 1
}

=
⋃

r∈Q

{
(d, e)

∣∣∣∣ d := p −−→
A

r , |d| = n , e := r −−→
A

q ∈ E

}
,

and hence
∑(

wl(c)
∣∣∣∣ c := p −−→

A
q , |c| = n + 1

)

=
∑
r∈Q

(
wl(d)wl(e)

∣∣∣∣ d := p −−→
A

r , |d| = n , e := r −−→
A

q ∈ E

)

=
∑
r∈Q

(∑(
wl(d)

∣∣∣∣ d := p −−→
A

r , |d| = n

))
Er,q .

As
∑(

wl(d)
∣∣∣∣ d := p −−→

A
r , |d| = n

)
= (En)p,r by the induction hypothesis,

the lemma is proved.

Since every word w of A∗ appears in the support of the entries of at most the
only power En where n = |w|, the sum

∑
n∈N En is well-defined as we shall see in

the next subsection and it holds:

Corollary 8. Let A = 〈 I, E, T 〉 be a K-automaton of finite dimension. Then:

A =
∑
n∈N

(I · En · T ) = I ·

∑

n∈N

En


 · T .

5Recall that the length of a path c is written |c|.
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2.2 Rational series

As hinted by Corollary 8, the characterisation of the behaviour of (finite) weighted
automata implies the definition of infinite sums of series. There are essentially two
ways for tackling this problem: the axiomatic approach and the topological one. The
axiomatic approach consists in imposing a set of properties to an operation called
star. But the star in the weight semirings we have listed above and that we want to
be able to deal with will not meet these properties. We are thus bound to take the
topological way, which is not a bad solution anyway.

2.2.1 The topological way

Topological semirings. Defining a topology on a set is the way to define the
notions of limit (or convergence) and, then, of infinite sums. Since K〈〈A∗〉〉 = KA∗

is the set of maps from A∗ to K, it is naturally equipped with the product topology of
the topology on K, which is also the simple convergence topology, that is, if

(
sn

)
n∈N

is a sequence of series

sn converges to s if and only if
for all w in A∗, 〈sn, w〉 converges to 〈s, w〉 .

The semirings we consider are equipped with a topology defined by a distance — a
more intuitive notion than an abstract definition of the topology — whether it is
the discrete topology (in the cases of N, Z, Zmin, etc.) or a more classical one (in the
cases of Q, R, etc.). Since A∗ is countable, the product topology on K〈〈A∗〉〉 is also
defined by a distance. If c is a distance on K (bounded by 1), the map defined by

∀s, t ∈ K〈〈A∗〉〉 d(s, t) =
1
2

∑
n∈N

( 1
2n

max
{

c(〈s, w〉, 〈t, w〉)
∣∣∣ |m| = n

})
(2.1)

is a distance on K〈〈A∗〉〉 that defines the simple convergence topology. In any case,
the origin of the topology on K〈〈A∗〉〉 is the topology on K.

A semiring K is a topological semiring if not only the set K is equipped with a
topology but if moreover both the addition and the multiplication are continuous
operations with respect to that topology. If K is a topological semiring, so is K〈〈A∗〉〉.

Summable families. Let T be a semiring6 equipped with a distance d which
makes it a topological semiring. We thus know precisely what means that an infinite
sequence

(
tn

)
n∈N

converges to a limit t when n tends to infinity. We must now give
an equally precise meaning to the sum of an infinite family

(
ti
)

i∈I
and it turns out

to be somewhat harder. The difficulty arises from the fact that we want a sort
6We temporarily change the symbol we use for a semiring on purpose: T not only plays the role

of K but also of K〈〈A∗〉〉 in this paragraph and the following.
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of associativity–commutativity extended ‘to infinity’ and hence to ensure that the
result and its existence does not depend on an arbitrary order put on the set I of
indices.

We shall therefore define an ‘absolute’ method of summability, and a family will
be described as ‘summable’ if we can find an increasing sequence of finite sets of
indices, a sort of ‘kernels’, such that not only do partial sums on these sets tend to a
limit but above all that any sum on a finite set containing one of these kernels stays
close to this limit. More precisely:

Definition 9. A family
(
ti

)
i∈I

of elements of T indexed by an arbitrary set I is
called summable if there exists t in T such that, for all positive ε, there exists a
finite subset Jε of I such that, for all finite subsets L of I which contain Jε, the
distance between t and the sum of the ti for i in L is less than ε; that is:

∃t ∈ T , ∀ε > 0 ,

∃Jε finite , Jε ⊂ I , ∀L finite , Jε ⊆ L ⊂ I d
(∑

i∈L

ti, t

)
� ε .

The element t thus defined is unique and is called the sum of the family
(
ti
)

i∈I
.

The sum just defined is equal to the usual sum if I is finite, and we write:

t =
∑
i∈I

ti .

We say that a family of series
(
si
)

i∈I
is locally finite if for every w in A∗ there is

only a finite number of indices i such that 〈si, w〉 is different from 0K.

Property 10. A locally finite family of power series is summable.

This simple property is a good example of what the topological structure placed
on K〈〈A∗〉〉 brings in. That we can define a sum for a locally finite family of series is
trivial: pointwise addition is defined for every w, independently of any assumption
about K. To say that the family is summable adds extra information: it ensures
that partial sums converge to the result of pointwise addition.

For every series s, the family of series {〈s, w〉w | w ∈ A∗} , where w is identified
with its characteristic series, is locally finite, and we have

s =
∑

w∈A∗
〈s, w〉w ,

which is the usual notation for series and which is thus justified. We also deduce
from this notation that K〈A∗〉 is dense in K〈〈A∗〉〉. Along the same line, the sum
in Corollary 8 is locally finite since for each pair of indices (p, q), the supports of
all

(
En

p,q

)
n∈N

are pairwise disjoint, hence the sum is well-defined.
Property 10 extends beyond locally finite families and generalises to a proposition

which links the summability of a family of series and that of families of coefficients.
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Property 11. A family
(
si

)
i∈I

of series of K〈〈A∗〉〉 is summable with sum s if and
only if, for every w in A∗, the family

(〈si, w〉)
i∈I

of elements of K is summable
with sum 〈s, w〉 .

2.2.2 The star operation.

Let t be an element of a topological semiring T; it is possible for the family
(
tn

)
n∈N

to be, or not to be, summable. If it is summable, we call its sum the ‘star of t’ and
write it t∗:

t∗ =
∑
n∈N

tn ..

Whether t∗ is defined or not depends on t, on T, on the distance on T, or on a
combination of all these elements. For example, (0T)∗ = 1T is defined for all T and
any topology on T; if T = Q , we have (1

2 )∗ = 2 if Q is equipped with the natural
topology, or undefined if the chosen topology is the discrete topology, while 1∗ is not
defined in either case.

The U identity

Lemma 12. Let T be a topological semiring and t an element of T whose star is
defined. We have the double equality

t∗ = 1T + t t∗ = 1T + t∗t . (U)

Proof. We obviously have t�n = 1T + t t<n = 1T + t<nt . As lim t<n = lim t�n = t∗ ,
and as addition and multiplication are continuous operations on T, we obtain (U)
by taking the limit of each side of the above equation.

Remark 13. If T is a topological ring, and if the star of t is defined, (U) can be
written t∗ − t t∗ = t∗ − t∗t = 1 or (1 − t) t∗ = t∗(1 − t) = 1 and so t∗ is the inverse
of 1 − t . Hence the classic identity

t∗ =
1

1 − t
= 1 + t + t2 + · · · (2.2)

is justified in full generality. It also means that forming the star can be considered
as a substitute of taking the inverse in a poor structure that has no inverse.

Star of proper series By analogy with polynomials and series in one variable,
we call constant term of a series s of K〈〈A∗〉〉 the coefficient in s of the empty word,
the neutral element of A∗. A series is called proper if its constant term is zero. The
sum of two proper series is a proper series; the product of a proper series with any
other series is a proper series. If s is proper, the family

(
sn

)
n∈N

is locally finite
and thus the star of a proper series of K〈〈A∗〉〉 is defined.

Not to be circulated – 13 – 7 December 2018



2.16 – Finite automata based computation models MPRI 2018/2019

In view of further developments, we take the following definition and notation.
Let s be a series of K〈〈A∗〉〉; the proper part of s is the proper series that coincides
with s for all the elements w of A∗ other than 1A∗ . It is convenient to write s0 = c(s)
for the constant term of s, and sp for the proper part of s:

c(sp) = 〈sp, 1A∗〉 = 0K and ∀ w ∈ A∗ \ 1A∗ 〈sp, w〉 = 〈s, w〉 ,

and we write s = s0 + sp (rather than s = s0 1A∗ + sp ).

2.2.3 The set of rational series.

The (K-)rational operations on K〈〈A∗〉〉 are:

(i) the K-algebra operations, that is:

• the left and right exterior multiplications by elements of K;

• the (pointwise) addition;

• the (Cauchy) product;

(ii) the star operation, which is not defined everywhere.

Point (ii) leads us to tighten the notion of closure: a subset E of K〈〈A∗〉〉 is closed
under star if for every series s in E such that s∗ is defined, then s∗ belongs to E .

A subset of K〈〈A∗〉〉 is rationally closed if it is closed under the rational opera-
tions; that is, if it is a sub-algebra of K〈〈A∗〉〉 closed under the star operation. The
intersection of any family of rationally closed subsets is rationally closed and thus the
rational closure of a set E is the smallest rationally closed subset which contains E ,
written KRat E .

Definition 14. A series of K〈〈A∗〉〉 is K-rational if it belongs to the rational closure
of K〈A∗〉, the set of polynomials on A∗ with coefficients in K. The set of K-rational
series (over A∗ with coefficients in K) is written KRat A∗.

If the monoid A∗ is implied by the context, we shall say K-rational series, or
just rational series, if K is also understood.

Example 15. (i) Let A∗ be the one-generator free monoid {x}∗ and K be a
field F. Then FRat x∗ is exactly the set of series developments of (F-)rational func-
tions (that is, quotients of two polynomials) and this is where the name rational —
rather the more common regular (for expressions and languages) — comes from.

(ii) If K = B , we simply write Rat A∗ for BRat A∗ and its elements are the
rational languages (or rational subsets) of A∗.
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2.3 The Fundamental Theorem of Finite Automata

We have then defined all notions that are necessary to establish a first characterisa-
tion of the behaviour of finite weighted automata. Almost all, indeed. The missing
one is that of strong semiring which we will explained later. It insures that the
semiring is ‘regular enough’ to allow a ‘natural’ computation for the star of a non
proper series. All the semirings that we have mentioned above are strong and this
hypothesis is not really restrictive. However, we have to include it in the following
statement, for sake of correctness.

Theorem 16. Let K be a strong semiring. A series of K〈〈A∗〉〉 is rational if and
only if it is the behaviour of some finite K-automaton over A∗.

The qualificative fundamental we give to this theorem — as well as the differ-
entiation from the statement usually called ‘Kleene Theorem’ — is justified by the
fact that the same statement holds for series over other monoids than free ones, over
graded monoids as we shall see below, and even over others that will not be con-
sidered here. In less formal words, this statement amounts to say that, under mild
and natural assumptions, the descriptive or computational power of finite graphs is
exactly the same as the one of the star operator (in presence of algebra operations
of course).

Theorem 16 sttates the equality of two families of series. Its proof consists in
showing two inclusions.

2.3.1 Behaviours of finite weighted automata are rational series

Proposition 17. The behaviour of a finite K-automaton over A∗ is a rational series
of K〈〈A∗〉〉.

The proof of Proposition 17 is based on a fundamental property.

Lemma 18 (Arden). Let s and t be two series of K〈〈A∗〉〉; if s is a proper series,
each of the equations

X = sX + t (2.3)
and X = X s + t (2.4)

has a unique solution: the series s∗t and ts∗ respectively.

Proof. In (U), we replace t by s and multiply on the left (resp. on the right) by t

and we obtain that s∗t (resp. ts∗) is a solution of (2.3) (resp. of (2.4)). Conversely,
if u is a solution of the equation X = t + sX ,

u = t + su =⇒ u = t + s t + s2u = · · · = s<nt + snu

holds for all integers n. Since s is proper, and multiplication continuous,
limsn = limsnu = 0 ,holds, from which follows u = lim (s<nt) = (lims<n) t = s∗t.
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From which we deduce:

Proposition 19. Let s and t be two proper series of K〈〈A∗〉〉; the following equalities
(or identities) hold:

(s + t)∗ = s∗(ts∗)∗ = (s∗t)∗s∗ , (S)
(s t)∗ = 1 + s (ts)∗t , (P)

∀n ∈ N s∗ = s<n(sn)∗ . (Zn)

The identity (S) is called the sum-star identity, (P) the product-star identity.

Remark 20. It follows by Lemma 4 that a square matrix m of dimension Q with
elements in K〈〈A∗〉〉 is a proper series of KQ×Q〈〈A∗〉〉 if all its elements are proper
series; (we say in this case that m is proper), and hence that the identities S, P
and Zn are satisfied by proper matrices.

Proof of Proposition 17. Let A = 〈 I, E, T 〉 be an automaton whose behaviour is
thus defined and equal to |||A||| = I · E∗ · T . This part then amounts to prove that
the entries of the star of a proper matrix E belong to the rational closure of the
entries of E, a classical statement established in general in different setting.

We write |||A||| = I · V with V = E∗ · T . Since E is proper and by Lemmas 4
and 18, V is the unique solution of

X = E · X + T (2.5)

and we have to prove that all entries of the vector V belong to the rational closure
of the entries of E. Lemma 18 already states that the property holds if A is of
dimension 1. For A of dimension Q, we write (2.5) as a system of ‖Q‖ equations:

∀p ∈ Q Vp =
∑
q∈Q

Ep,qVq + Tp . (2.6)

We choose (arbitrarily) one element q in Q and by Lemma 18 again it comes:

Vq = E∗
q,q


 ∑

p∈Q\{q}
Eq,pVp + Tq


 ,

an expression for Vq that can be substituted in every other equations of the sys-
tem (2.6), giving a new system

∀p ∈ Q \ {q} Vp =
∑

r∈Q\{q}

[
Ep,r + Ep,qE∗

q,qEq,r

]
Vr + Ep,qE∗

q,qTq + Tp .

And the property is proved by induction hypothesis.
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2.3.2 Rational series are behaviours of finite weighted automata

The converse of Proposition 17 reads as follow.

Proposition 21. If K is a strong semiring and if s is in KRat A∗, there exixts a
finite K-automaton over A∗ whose behaviour is equal to s.

We prove indeed that the family of behaviours of finite K-automata over A∗ con-
tains the polynomials (the characterisitic series of every letter indeed) and is closed
under the exterior multiplication, the sum, the product, and, under the assump-
tion of strongness of K, under star. It follows from Definition 14 that this family
contains KRat A∗.

In order to establish the closure properties, it is convenient to define a restricted
class of automata, called the standard automata.

Standard automata

Definition 22. A K-automaton A = 〈 I, E, T 〉 is standard if the initial vector I

has a single non-zero entry i , equal to 1K, and if this unique initial state i is not
the destination of any transition whose label is non-zero.

In matrix terms, a standard automaton A can be written

A =
〈(

1 0
)

,




0 K

0 F


 ,




c

U




〉
, (2.7)

since the entries of the i-th column of E are (sums of the) weighted labels of the
transitions the destination of which is i. The definition does not forbid the initial
state i from also being final; that is, the scalar c is not necessarily zero. This value
c is the constant term of |||A||| . the following does not participate to the proof of
Proposition 21 but tells that standard automata are not ‘too special’.

Proposition 23. Every automaton A is equivalent to a standard automaton whose
weighted labels are linear combinations of the weighted labels of A.

We now define operations on standard automata that are parallel to the rational
operations. Let A (as in (2.7)) and A′ (with obvious translation) be two standard
automata; the following standard K-automata are defined:

• k A =
〈(

1 0
)
,




0 k K

0 F


,




k c

U



〉

and Ak =
〈(

1 0
)
,




0 K

0 F


,




ck

U k



〉

;
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• A + A′ =
〈(

1 0 0
)
,




0 K K ′

0 F 0

0 0 F ′




,




c + c′

U

U ′




〉
;

• A · A′ =
〈(

1 0 0
)
,




0 K cK ′

0 F H

0 0 F ′




,




cc′

V

U ′




〉
,

where H = (U · K ′) · F ′ and V = U c′ + (U · K ′) · U ′ ;

• A∗ =
〈(

1 0
)
,




0 c∗K

0 G


,




c∗

U c∗



〉

,

which is defined if and only if c∗ is defined, and where G = U · c∗K + F .
Some figures may help visualize these constructions. Let A = 〈 {i}, E, T 〉 and

A′ = 〈 {j}, E′, T ′ 〉 be two standard automata drawn as:

i

p

q

r

c Uq

Ur
Kp

Kq

A j

s

t

u

c′ U ′
t

U ′
uK ′

s

K ′
t

A′

Then k A and Ak are drawn as:

i

p

q

r

k c Uq

Ur
k Kp

k Kq

k A i

p

q

r

c k Uq k

Ur kKp

Kq

Ak

and A · A′ , A + A′ , and A∗ are respectively drawn as:

i

p

q

r

c c′

Uq c′

Ur c′Kp

Kq

s

t

u

U ′
t

U ′
u

c K ′
s

c K ′
t

Uq K ′
s

Uq K ′
t

Ur K ′
s

Ur K ′
s

A · A′
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p

q

r

c + c′

Uq

Ur

Kp

Kq

s

t

u

U ′
t

U ′
u

K ′
s

K ′
t

A + A′ i

p

q

r

c∗
Uqc∗

Urc∗c∗ Kp

c∗ Kq

Ur c∗ Kp

Ur c∗ Kq

Uq c∗ Kp Uq c∗ Kq

A∗

Straightforward computations show

Proposition 24.
k A = k A , Ak = A k , A + A′ = A + A′ , and A · A′ = A A′ .

As expected, the case of the star operator is somewhat more complex. The
automaton A∗ is defined if and only if c∗ is defined; let A p be the proper part of
the series A . Then we have:

Proposition 25. A∗ = c∗ ( A p c∗)∗ .

The last step being given by the following which will be established in the next
subsection after the definition of strong semirings.

Proposition 26. Let K be a strong topological semiring and A∗ a free monoid. Let s

be a series of K〈〈A∗〉〉, s0 its constant term and sp its proper part. Then s∗ is defined
if and only if s∗

0 is defined and in this case we have

s∗ = (s∗
0 sp)∗s∗

0 = s∗
0(sp s∗

0)∗ . (2.8)

Corollary 27. If K is a strong topological semiring, then A∗ = A ∗ .

Proof of Proposition 21. A trivial construction shows that the family of behaviours
of standard automata contains the characteristic series of any letter of A, Proposi-
tion 24 that it contains the polynomials, Proposition 24 and Corollary 27 that it is
rationally closed, and hence contains KRat A∗.

Strong semirings As stated by Proposition 26, strong semirings give a framework
in which the question whether the star of an arbitrary series, not necessarily proper,
is defined or not can be given an answer and, when defined, how the star can be
computed.

Definition 28. A topological semiring is strong if the product of two summable
families is a summable family; that is, if the two families

(
si
)

i∈I
and

(
tj
)

j∈J
are

summable with sum s and t respectively, then the family {si tj | (i, j) ∈ I×J} is
summable with sum s t .
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All the semirings which we shall consider are strong: semirings equipped with
the discrete topology, the sub-semirings of Cn (equipped with the natural topology),
and the positive semirings. We then easily verify:

Property 29. The semirings of matrices and the semirings of series on A∗, with
coefficients in a strong semiring, are strong.

Remark 30. The notion of strong semiring has been introduced in EAT in order to
have a sufficient condition for the proof of Proposition 26. Since then, the question
was open whether there exist semirings that are not strong, although the answer
was likely to be positive. An example of a non strong semiring has been given very
recently by my colleague David Madore. The question whether there exist semirings
in which (2.8) does not hold is still open.

Remark 31. Along the line of Remark 13, it holds that if K is a ring, a series
of K〈〈A∗〉〉 is invertible if, and only, if its constant term is invertible.

Proof of Proposition 26. The condition is necessary since 〈sn, 1A∗〉 = s0n and, if s∗

is defined, the coefficients of 1A∗ in
(
sn

)
n∈N

form a summable family.
Conversely, assume that

(
sn

0
)

n∈N
is summable, with sum s∗

0 . For all pairs of
integers k and l, set

Pk,l =
∑

i0,i1,...,ik∈N
i0+i1+···+ik=l

si0
0 sp si1

0 sp · · · s
ik−1
0 sp sik

0 .

By convention, set P0,l = sl
0 and Pk,0 = sk

p . We verify by inspection that, for all
integers n

sn = (s0 + sp)n =
l=n∑
l=0

Pn−l,l . (2.9)

By induction on k, we will show that the family

Fk = {si0
0 sp si1

0 sp · · · s
ik−1
0 sp sik

0
∣∣ i0, i1, . . . , ik ∈ N}

is summable in KA∗, with sum

Qk = (s∗
0 sp)k s∗

0 = s∗
0 (sp s∗

0)k .

In fact, the hypothesis on s0 ensures the property for k = 0, and also that the family
G = {s0n sp | n ∈ N} is summable in K〈〈A∗〉〉, with sum s0∗sp . The family Fk+1 is
the product of the families G and Fk and the assumption that K, and hence K〈〈A∗〉〉,
is strong gives us the conclusion.

Hence we deduce that, for each k, the family {Pk,l | l ∈ N} is summable, with
sum Qk. The family {Qk | k ∈ N} is locally finite, hence summable, with sum

t =
∞∑

k=0
Qk = (s∗

0 sp)∗ s∗
0 = s∗

0 (sp s∗
0)∗ .
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l

k
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• • • • • • • •

• • • • • • • •
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1 s0 s02 s03

sp

sp2

sp3

(s0 + sp)n

Qk

Pk,l

s0sp + sps0

Figure 2: A graphical representation of Proposition 26

We can now easily finish the proof by showing that the ‘doubly indexed’ family
{Pk,l | k, l ∈ N} is summable, with sum t . Equation (2.9), then ensure that the

family
(
sn

)
n∈N

is summable with sum t .

In the same spirit as Remark 20, we note that (2.8) holds for every matrix m such
that the star of its matrix of constant terms is defined. A particularly interesting
case of this is where the matrix of constant terms is a strict upper triangular matrix.

2.4 Generalisation to graded monoids

Graded monoids. For the Cauchy product be always defined on K〈〈M〉〉, inde-
pendently of K, it is necessary (and sufficient) that, for every m in M , the set of
pairs (u, v) such that uv = m is finite – we will say that m is finitely decomposable.

The construction of series over A∗, which generalises that of series of one variable,
shows that it is from the length of words in A∗ that we build a topology on K〈〈A∗〉〉 .
The existence of an additive length is the main assumption that we shall make
about M .

Definition 32. Let M be a monoid. A function ϕ : M → N is a length on M if:
(i) ϕ(m) is strictly positive for all m other than 1M ;
(ii) ∀m, n ∈ M ϕ(mn) � ϕ(m) + ϕ(n) .

We shall say that a length is a gradation if it is additive; that is, if:
(iii) ∀m, n ∈ M ϕ(mn) = ϕ(m) + ϕ(n) ;

and that M is graded if it is equipped with a gradation.

Example 33. (i) Every free monoid is graded.
(ii) Every cartesian product of free monoids, in particular, every free commutative

monoid, and, more generally, every trace (or free partially commutative) monoid is
graded.
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The definition implies that ϕ(1M ) = 0 and that a finite monoid, more generally
a monoid that contains an idempotent other than the identity (for example, a zero),
cannot be equipped with a gradation. Any group, finite or infinite, is not a graded
monoid.

Proposition 34. In a finitely generated graded monoid, the number of elements
whose length is less than an arbitrary given integer n is finite.

In other words, every element of a graded monoid M can only be written in a
finite number of different ways as the product of elements of M other than 1M . We
can deduce in particular:

Corollary 35. In a finitely generated graded monoid, every element is finitely de-
composable.

Note that a finite monoid is not graded, but that every element is nonetheless
finitely decomposable. From Corollary 35, we deduce the proposition aimed at by
Definition 32:

Proposition 36. Let M be a finitely generated graded monoid and K a semiring.
Then K〈〈M〉〉, equipped with the Cauchy product, is a semiring and a (left and right)
algebra7 over K.

The Fundamental Theorem of Finite Automata (bis). After Proposition 36,
the whole theory developed in Sec. 2.2 and 2.3 can be repeated, mutatis mutandis,
while replacing the free monoid A∗ with any graded monoid M . In particular, we
state:

Definition 37. A series of K〈〈M〉〉 is K-rational if it belongs to the rational closure
of K〈M〉, the set of polynomials on M with coefficients in K. The set of K-rational
series (over M with coefficients in K) is written KRat M .

Example 38. (i) The series s =
∑

n∈N(n + 1)(an, bn) =
(
(a, b)∗)2 belongs to

NRat ({a}∗×{b}∗).
(ii) If R ∈ Rat A∗ and S ∈ Rat B∗, then R×S ∈ Rat (A∗×B∗).

And it holds:

Theorem 39. Let K be a strong semiring and M a graded monoid. A series
of K〈〈M〉〉 is rational if and only if it is the behaviour of some finite K-automaton
over M .

7If K is a ring, K〈〈M〉〉 is even what is classically called a graded algebra, which is the origin of
the terminology chosen for graded monoids.
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3 Recognisability

The second characterisation of the behaviour of finite weighted automata as series
realised by representations will be central in many developments to come in these
lectures. In contrast with the preceding one, it holds for series over a free monoid
only.

3.1 K-representations and K-recognisable series

A K-representation of A∗ of dimension Q is a morphism µ from A∗ to the (multiplic-
ative) monoid of square matrices of dimension Q with entries in K. By definition,
indeed, for the multiplication of matrices be well-defined, the dimension Q is finite.
A K-representation of A∗ (of dimension Q) is also the name we give to a triple
〈 I, µ, T 〉 where, as before,

µ : A∗ −→ KQ×Q

is a morphism and where I and T are two vectors:

I ∈ K1×Q and T ∈ KQ×1 ;

that is, I is a row vector and T a column vector, of dimension Q, with entries in K.
Such a representation defines a map from A∗ to K by

∀w ∈ A∗ w �−→ I · µ (w) · T ;

that is, the series s:
s =

∑
w∈A∗

(I · µ (w) · T )w .

The series s of K〈〈A∗〉〉 is realised, or recognised, by the representation 〈 I, µ, T 〉. We
also say that 〈 I, µ, T 〉 realises, or recognises, the series s.

Definition 40. A series of K〈〈A∗〉〉 is K-recognisable if it is recognised by a K-repre-
sentation. The set of K-recognisable series over A∗ is written KRec A∗.

Example 41 (Example 3 cont.). Let 〈 I1, µ1, T1 〉 be the representation defined by

µ1 (a) =
(

1 0
0 1

)
, µ1 (b) =

(
1 1
0 1

)
, I1 =

(
1 0

)
and T1 =

(
0
1

)
.

For all w in {a, b}∗, I1 ·µ1 (w) ·T1 = |w|b holds, hence the series t1 =
∑

w∈A∗ |w|b w

is N-recognisable.

Proposition 42. Every finite linear combination, with coefficients in K, of K-reco-
gnisable series over A∗ is a K-recognisable series.
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Proof. Let s and t be two K-recognisable series over A∗, respectively recognised
by the K-representations 〈 I, µ, T 〉 and 〈 J, κ, U 〉. For all k in K the series k s is
recognised by the representation 〈 k I, µ, T 〉, the series sk by the representation
〈 I, µ, T k 〉, and the series s + t by the representation 〈 K, π, V 〉 defined by the
following block-decomposition:

K =
(
I J

)
, π (w) =

(
µ (w) 0

0 κ (w)

)
, V =

(
T

U

)
.

Every morphism of semirings ϕ : K → L extends to a morphism from K〈〈A∗〉〉
to L〈〈A∗〉〉, still denoted by ϕ, by the pointwise map: for every s in K〈〈A∗〉〉, ϕ (s) is
defined by 〈ϕ (s) , w〉 = ϕ (〈s, w〉) for every w in A∗. If 〈 I, µ, T 〉 is a representation
of the series s of K〈〈A∗〉〉, then 〈 ϕ (I) , ϕ ◦ µ, ϕ (T ) 〉 is a representation of ϕ (s). It
then follows:

Proposition 43. Let ϕ : K → L be a morphism of semirings. The image under ϕ

of a K-recognisable series over A∗ is an L-recognisable series over A∗.

Consistency with the classical definition of recognisable sets. For K = B,
Definition 40 coincides indeed with the definition of the recognisable subsets of a
monoid as the sets that are saturated by a congruence of finite index.

If s is a B-recognisable series over A∗, realised by the representation 〈 I, µ, T 〉,
then µ : A∗ → BQ×Q is a morphism from A∗ to a finite monoid. The series s

of B〈〈A∗〉〉, s =
∑

w∈A∗(I · µ (w) · T )w ,can be seen as the subset s = µ−1 (P ) of A∗

where P =
{

p ∈ BQ×Q
∣∣∣ I · p · T = 1B

}
.

Conversely, a morphism α from A∗ into a finite monoid N is a morphism from A∗

into the monoid of Boolean matrices of dimension N (the representation of N by right
translations over itself) and the B-representation that realises any subset recognised
by α easily follows.

3.2 The key lemma

The specificity of the free monoid in terms of representation is expressed in the
following statement.

Lemma 44. Let K be a semiring and A a finite alphabet. Let Q be a finite set and
µ : A∗ → KQ×Q a morphism. We set

X =
∑
a∈A

µ (a) a .

Then, for every w in A∗, 〈X∗, w〉 = µ (w) holds.
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Proof. The matrix X is a proper series of KQ×Q〈〈A∗〉〉 and hence X∗ is defined. We
first prove, by induction on the integer n, that

Xn =
∑

w∈An

µ (w) w ,

an equality trivially verified for n = 0 , and true by definition for n = 1 . It follows
that

Xn+1 = Xn · X =
( ∑

w∈An

µ (w) w
)

·
( ∑

a∈A

µ (a) a
)

=
∑

(w,a)∈An×A

(
µ (w) · µ (a)

)
w a

=
∑

(w,a)∈An×A

µ (w a) w a =
∑

v∈An+1

µ (v) v ,

since, for each integer n, An+1 is in bijection with An×A as A∗ is freely generated
by A. For the same reason, A∗ is the disjoint union of the An, for n in N, and it
follows that, for every w in A∗:

〈X∗, w〉 = 〈X |w|, w〉 = µ (w) .

Example 45 (Example 3 cont.). Take K = N and A∗ = {a, b}∗ . Then
(

a + b b

0 a + b

)
= µ1 (a) a+µ1 (b) b with µ1 (a) =

(
1 0
0 1

)
, µ1 (b) =

(
1 1
0 1

)
.

3.3 The Kleene–Schützenberger Theorem

We can now get to our main point: finite K-automata over A∗ and K-representations
of A∗ are one and a same thing when A is finite. We state this under the classical form
but we are really interested by the transformations of automata into representations
and conversely.

Theorem 46 (Kleene–Schützenberger). Let K be a strong semiring, and A a finite
alphabet. A series of K〈〈A∗〉〉 is K-rational if and only if it is K-recognisable. That
is:

KRec A∗ = KRat A∗ .

Proof. We prove the two inclusions, one at a time:

KRec A∗ ⊆ KRat A∗ and KRat A∗ ⊆ KRec A∗ . (3.1)

Each of the inclusions is proved in the form of a property and is obtained from the
Fundamental Theorem together with the freeness of A∗ and the finiteness of A by
means of the key Lemma 44.

Property 47. If A is finite, K-recognisable series on A∗ are K-rational.
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Proof. Let 〈 I, µ, T 〉 be a representation which recognises a series s; that is, 〈s, w〉 =
I · µ (w) · T , for every w in A∗. Let 〈 I, X, T 〉 be the automaton defined by

X =
∑
a∈A

µ (a) a .

By Lemma 44, we have

s =
∑

w∈A∗

(
I · µ (w) · T

)
w = I ·

( ∑
w∈A∗

(µ (w))w

)
· T = I · X∗ · T .

The series s is the behaviour of the K-automaton 〈 I, X, T 〉. Since A is finite this
automaton is finite and, by the Fundamental Theorem, s belongs to KRat A∗.

Property 48. If K is a strong semiring, K-rational series on A∗ are K-recognisable.

Proof. By Theorem 16, a K-rational series s is the behaviour of a finite K-automaton
〈 I, X, T 〉 and the entries of X are finite linear combinations of elements of A (and
those of I and T are scalar). We can therefore write X =

∑
a∈A µ (a) a where µ (a)

is the matrix of coefficients of the letter a in X. By Lemma 44, we have

∀w ∈ A∗ 〈s, w〉 = 〈I · X∗ · T, w〉 = I · µ (w) · T ,

and the series s is recognised by the representation 〈 I, µ, T 〉.

The two inclusions (3.1) prove the theorem.

On the basis of Theorem 46, we write an automaton A over A∗ indifferently as
A = 〈 I, E, T 〉 or as a representation A = 〈 I, µ, T 〉 with E =

∑
a∈A µ (a) a .

Example 49. (i) Generating function. Let L be a language of A∗. The
generating function gL of L is the series over one variable (written z in general):

gL =
∑
n∈N

an zn ,

such that, for every n in N, an is the number of words of L of length n.
Let A = 〈 I, µ, T 〉 be an unambiguous (Boolean) automaton of dimension Q and

L = A the language accepted by A, that is, the behaviour of the (N-)characteristic
automaton of A is a characteristic series: A = L . Let π be the Q×Q-matrix with
entries in N defined by:

π =
∑
a∈A

µ (a) .

Then, 〈 I, π, T 〉 is a representation of gL, that is, for every n in N, an = I · πn · T .
(ii) Probabilistic automata. A P ×Q-matrix with entries in R (or in Q) is

said to be stochatic if all entries are non negative and if the sum of all entries of every
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row is equal to 1. An automaton over A∗, A = 〈 I, µ, T 〉 is said to be probabilistic
if I and µ (a), for every a in A, are stochastic and if T has 0-1 entries.

For every w in A∗, 〈 A , w〉 = I · µ (w) · T can be interpreted as the probability
of acceptance of w by A. Together with a probabilistic automaton A, any η in R,
0 ≤ η < 1, defines the langage

L (A, η) = {w ∈ A∗ | 〈 A , w〉 ≥ η}

and such a language is called a stochastic language. The family of stochastic lan-
guages strctly contains the one of rational languages.

Computation of coefficients. The description of automata as representations
leads to an efficient solution to the problem of computing the coefficient 〈s, w〉 of a
rational series s. Suppose that s is given by a finite automaton A = 〈 I, E, T 〉 or,
which is the same, by a representation A = 〈 I, µ, T 〉 of dimension n.

Then, 〈s, w〉 = I · µ (w) · T and the computation of µ (w) would cost O
(
�n3)

where � is the length of w; the last step to get I ·µ (w) ·T would add another O
(
n2).

But a smarter solution is possible. The computation of the succession of the �

vectors I ·µ (u) of Kn for all prefixes u of w would cost O
(
�n2) with a final overhead

of O (n) in order to get the result.
In the Boolean case, this method of computation for testing whether a word is

accepted or not by a non-deterministic automaton is known as the lazy or on-the-fly
determinisation.

3.4 The Hadamard product

The Hadamard product of series s and t, denoted by s � t, is indeed the product of
maps into a monoid:

∀w ∈ A∗ 〈s � t, w〉 = 〈s, w〉 〈t, w〉 .

The Hadamard product is defined on general series but it is its effect on recognisable
series which interests us, and we first define a product on representations.

Tensor product of K-representations. Let X be a matrix of dimension P × P ′

and Y a matrix of dimension R×R′ (with entries in the same semiring K); the tensor
product of X by Y , written X ⊗Y , is a matrix of dimension (P × R) × (P ′ × R′)
defined by

∀p ∈ P , ∀p′ ∈ P ′ , ∀r ∈ R , ∀r′ ∈ R′ X⊗Y (p,r),(p′,r′) = Xp,p′Yr,r′ .

If K is commutative, the tensor product is also commutative, and we keep this
hypothesis in this subsection. The next statement, a classical equation in matrix
calculus, is a matter of an easy verification.
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Lemma 50. Let K be a commutative semiring. Let X, Y , U and V be four matrices
with entries in K, respectively of dimension P ×Q, P ′×Q′, Q×R and Q′×R′.

(X⊗Y ) · (U ⊗V ) = (X · U)⊗(Y · V ) .

It then follows:

Proposition 51 (Tensor product of representations). Let K be a commutative semi-
ring. Let µ : A∗ → KQ×Q and κ : A∗ → KR×R be two representations. The map
µ ⊗ κ, defined for all (u, v) in A∗×A∗ by

[ µ ⊗ κ] (u, v) = µ (u)⊗κ (v)

is a representation of A∗×A∗ in K(Q×R)×(Q×R) .

Proof. For all (u, v) and (u′, v′) in A∗×A∗, we have:

(
[ µ ⊗ κ] (u, v)

) · ([ µ ⊗ κ] (u′, v′)
)

=
(
µ (u)⊗κ (v)

) · (µ (
u′)⊗κ

(
v′))

=
(
µ (u) · µ

(
u′))⊗(

κ (v) · κ
(
v′))

= µ
(
uu′)⊗κ

(
v v′) = [ µ ⊗ κ] (uu′, v v′) .

Hadamard product of recognisable series. The Hadamard product is to series
what intersection is to sets, which really makes sense only if the semiring of coeffi-
cients is commutative.

Theorem 52 (Schützenberger). Let K be a commutative semiring. Then KRec A∗

is closed under Hadamard product.

Proof. Let s realised by 〈 I, µ, T 〉 and t realised by 〈 J, κ, U 〉 be two series in KRec A∗.
Since the map w �→ (w, w) is a morphism from A∗ to A∗×A∗, Proposition 51 implies
that the map w �→ µ (w) ⊗ κ (w) is also a morphism, and we also write it µ ⊗ κ .

By definition we have, for all w in A∗,

〈s�t, w〉 = (I · µ (w) · T ) (J · κ (w) · U) = (I · µ (w) · T )⊗(J · κ (w) · U)

the second equality expressing the product of two elements of K as the tensor product
of two 1×1 matrices. Lemma 50 (applied three times) yields:

〈s�t, w〉 = (I⊗J) · (µ (w)⊗κ (w)) · (T ⊗U) = (I⊗J) · ([ µ ⊗ κ](w)) · (T ⊗U) .

Since K is commutative, µ ⊗ κ is a K-representation, and s � t is recognisable and
realised by (I⊗J, µ ⊗ κ, T ⊗U) .
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Remark 53. Lemma 50, Proposition 51 and then the proof of Theorem 52 hold in-
deed under the weaker hypothesis that every entry of one representation commutes
with every entry of the other. It is the case in particular when one of the series
is characteristic or, more prececisely, when one of the series is realised by a char-
acteristic representation, with obvious meaning. This setting will also be the one
of transducers and relations — automata and series over direct products of free
monoids — and their composition (see Exercise 15. and Lect. V).

Remark 54. As a consequence of Theorem 46, the Hadamard product of two K-
rational series on A∗ is a K-rational series (if K is a commutative semiring, or
if one is characteristic). Moreover, the tensor product of representations of A∗

translates directly into a construction on K-automata over A∗ whose labels are linear
combinations of letters of A, which is the natural generalisation of the Cartesian
product of Boolean automata, and which we can call the Hadamard product of K-
automata.

C2

b
a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Figure 3: C2, the Hadamard product of C1 by itself

Example 55. The N-automaton C2 of Fig.3 is the Hadamard product of the N-
automaton C1 of Fig.1 by itself. Therefore, for every w in A∗, 〈 C2 , w〉 = w2 holds.

4 Exercises

1. Semiring structure. Is M = 〈N, max, +, 0, 0 〉 a semiring?

2. Positive semiring. Give an example of a semiring in which the sum of any two non-zero
elements is non-zero but which is not positive. [Hint: consider a sub-semiring of N2×2.]

3. Example of N-automaton. (a) Compute the coefficient of a3ba2ba in the series
realised by the N-automaton:

a

b

a a

(b) Give the general formula for the coefficient of every word of A∗.
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4. Examples of Nmin, Nmax-automata. Let E1 be the Nmin-automaton over {a}∗ shown
in Fig. 4 (a) and E2 the Nmax-automaton shown in the same figure. Similarly, let E3 and E4
be the Nmin and Nmax-automata shown in Fig. 4 (b).

Give a formula for 〈 E1 , an〉, 〈 E2 , an〉, 〈 E3 , an〉, and 〈 E4 , an〉.

0
0 0

a |1
a |1 a |2

(a) The automata E1 and E2

0
0 0

a |2
a |2 a |1

(b) The automata E3 and E4

Figure 4: Four ‘tropical’ automata

5. A Z-automaton. Build a Z-automaton D1 such that 〈 D1 , w〉 = |w|a −|w|b , for every w

in A∗.

6. Support of Z-automata. Give an example of a Z-automaton A such that the inclusion
supp ( A ) ⊆ supp A is strict.

7. Automata construction. Let a∗ be the characteristic N-series of a∗ : a∗ =
∑

n∈N
an .

Give an ‘automatic’ proof (that is, by means of automata constructions) for:

(a∗)2 =
∑
n∈N

(n + 1)an .

8. Shortest run and Nmin-automata. Build a Nmin-automaton F1 such that, for every w

in A∗, 〈 F1 , w〉 is the minimal length of runs of ‘a’ ’s in w, that is, if w = an0 ban1 b · · · ank−1 bank ,
then 〈 F1 , w〉 = min{n0, n1, . . . , nk}.

9. Identification of a Q-automaton. Show that the final function of the Q-automaton Q2
over {a}∗ depicted on the right in Figure 5 (where every transition is labelled by a | 1) can
be specified in such a way the result is equivalent to Q1 depicted on the left.

1

1

a |2

1

1

1/4

?

? ?

?

?

Figure 5: Two Q-automata

10. Ambiguous automata. Show that it is decidable whether a Boolean automaton is
unambiguous or not. [Hint: Note that this is not a result nor a proof on weighted automata
but on Boolean automata. It is put here in view of Example 49. ]
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11. Representation with finite image. Let s be a K-recognisable series of A∗, realised
by a representation 〈 I, µ, T 〉 of dimension Q. Show that if µ (A∗) is a finite submonoid
of KQ×Q, then, for every k in K the set s−1(k) = {w ∈ A∗ | 〈s, w〉 = k} is a recognisable
language of A∗.

12. Support of Z-rational series. (a) Give an example of a Z-rational series over A∗

whose support is not a recognisable language of A∗.
(b) Give an example of a Z-rational series over A∗ which is an N-series (that is, all

coefficients are non-negative) and which is not an N-rational series over A∗.

13. Support of Z-rational series. (a) Prove that the support of an N-rational series
over A∗ is a recognisable language of A∗.

(b) Let s be in NRec A∗. Prove that for any k in N, the sets
s−1(k) = {w ∈ A∗ | 〈s, w〉 = k} and s−1(k + N) = {w ∈ A∗ | 〈s, w〉 � k}

are recognisable languages of A∗.
(c) Give an example of a Z-rational series s over A∗ such that there exists an integer z

such that s−1(z) is not a recognisable language of A∗.

14. Support of Zmin-rational series. (a) Let s be a Nmin-rational series over A∗.
Prove that for any k in N, the sets

s−1(k) = {w ∈ A∗ | 〈s, w〉 = k} and s−1(k + N) = {w ∈ A∗ | 〈s, w〉 � k}
are recognisable languages of A∗.

(b) Give an example of a Zmin-rational series s over A∗ such that there exists an integer z

such that s−1(z) is not a recognisable language of A∗.

15. Recognisable series in direct product of free monoids. Let K be a commutative
semiring. The two semirings K〈〈A∗〉〉 and K〈〈B∗〉〉 are canonically subalgebras of K〈〈A∗×B∗〉〉;
the injection is induced by

u �→ (u, 1B∗) and v �→ (1A∗ , v) ,

for all u in A∗ and all v in B∗. Modulo this identification, a product (k u) (hv) is written
k h (u, v) and the extension by linearity of this notation gives the following definition.
Definition 56. Let s be in K〈〈A∗〉〉 and t be in K〈〈B∗〉〉. The tensor product of s and t,
written s ⊗ t , is the series of K〈〈A∗×B∗〉〉 defined by:

∀(u, v) ∈ A∗×B∗ 〈s ⊗ t, (u, v)〉 = 〈s, u〉 〈t, v〉 .

On the other hand, K-recognisable series over a non-free monoid M are defined, exactly as the
K-recognisable series over a free monoid, as the series realised by a K-representation 〈 I, µ, T 〉,
where µ is a morphism from M into KQ×Q.

Establish:
Proposition 57. A series s of K〈〈A∗×B∗〉〉 is recognisable if and only if there exists a finite
family {ri}i∈I of series of KRec A∗ and a finite family {ti}i∈I of series of KRec B∗ such
that

s =
∑
i∈I

ri ⊗ ti .
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Notation Index

A = 〈 A, Q, I, E, T 〉 (Boolean automaton),
4

A = 〈 A, Q, i, δ, T 〉 (deterministic Boolean
automaton), 34

A X=⇒ B (A conjugate to B by X), 41
An (Automaton with subliminal states),

38
δ(p, w) (transition in deterministic auto-

maton), 34
InA(p) (Incoming bouquet), 38
OutA(p) (Outgoing bouquet), 38
iA (subliminal initial state), 38
p ·w (transition in deterministic automaton),

34
tA (subliminal final state), 38
A = 〈K, A, Q, I, E, T 〉, A = 〈 A, Q, I, E, T 〉

(weighted automaton), 5
A (behaviour of A), 6
CA (set of computations in A), 6
�(d), �(c) (label of a path, a computation),

6
|d|, |c| (length of a path, a computation),

6
w(d), w(c) (weight of a path, a computa-

tion), 6
wl(d), wl(c) (weighted label of a path, a

computation), 6

B (Boolean semiring), 3

s � t (Hadamard product of s and t), 27

K (arbitrary semiring), 2
KQ×Q (semiring of matrices with entries

in K), 2
1K (identity of the semiring K), 2
0K (zero of the semiring K), 2

Xϕ (amalgamation matrix), 42

N (semiring of non negative integers), 3

Nmax (semiring N, max, +), 3
Nmin (semiring N, min, +), 3

Q (semiring of rational numbers), 3
Q+ (semiring of non negative rational num-

bers), 3

R (semiring of real numbers), 3
R+ (semiring of non negative real num-

bers), 3

L (characteristic series of L), 8
K〈〈A∗〉〉 (set of series over A∗ with coeffi-

cient in K), 7
〈s, w〉 (coefficient of w in the series s), 7

X⊗Y (tensor product of X and Y ), 27
µ ⊗ κ (tensor product of µ and κ), 28

Z (semiring of integers), 3
Zmax (semiring Z, max, +), 3





General Index

a co-quotient, 43
addition

pointwise, 7
algebra, 7
amalgamation matrix, 42
automaton

behaviour of –, 6
Boolean, 8
characteristic, 26
computation, 6

length, 6
conjugate, 41
dimension, 4
final function, 4
incidence matrix, 9
initial function, 4
morphism

co-coverings, 39
co-immersions, 39
coverings, 38
immersions, 39
In-morphisms, 38
Out-morphisms, 38

path, 5
label, 6
length, 6
w-label, 6
weight, 6

probabilistic, 27
support, 8
unambiguous, 26

K-automaton, 4

bisimulation, 33

Cauchy product, see series
conjugacy, 33, 41
convergence

simple, 11
covering, 34

dimension
of an automaton, 4

generating function, 26

Hadamard product, 27

identity
product-star, 16
sum-star, 16

In-morphism, 43
incidence matrix, 4

language
stochastic, 27

lateralisation, 33

matrix
proper, 16
stochatic, 26
transfer, 41

minimal automaton, 34
module, 7
monoid

finitely generated, 22
of finite type, 22

morphism (of semirings), 3
multiplication

exterior, 7

Nerode’s equivalence, 35

Out-morphism, 33, 42

polynomial, 8
power series, see series

locally finite family, 12
summable family, 12

quotient, 34, 42

rational series, see series
ring, 13, 20
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semiring, 2
commutative, 2
positive, 3, 8
strong, 20
topological semiring, 11

series, 7
Cauchy product of –, 7
characteristic, 8, 26
coefficient, 7
constant term of, 13
proper, 13
proper part of, 14
rational, 14, 22
support, 8

state
final, 5
initial, 5

states, 4

tensor product, 27
topology

dense subset, 12
product, 11

transfer matrix, 41
transitions, 4
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